Supplementary Information for:

Synthesis and Structure of $A_4V_6[Te_2^{4+}Te^{6+}]O_{24}$ (A =K, Rb) — Two New Quaternary Mixed-Valent Tellurium Oxides

Tianxiang Zhu^{*a*}, Jingui Qin^{**a*} and P. Shiv Halasyamani^{*b*}

^{*a*}Department of Chemistry, Hubei Key Lab on Organic and Polymeric Opto-electronic Materials, Wuhan University, Wuhan 430072, China, and ^{*b*} Department of Chemistry, 136 Fleming Building, University of Houston, TX 77204-5003, USA

S1. ORTEP (50% probability level ellipsoids) diagrams for the VO₄, TeO₃ and TeO₆ polyhedra and the KO₆, KO₁₀ polyhedra for $K_4V_6Te_3O_{24}$

S2. ORTEP (50% probability level ellipsoids) diagrams for the VO₄, TeO₃ and TeO₆ polyhedra and the RbO₆, RbO₁₀ polyhedra for Rb₄V₆Te₃O₂₄

S3. Experimental and calculated powder X-ray diffraction patterns for K₄V₆Te₃O₂₄

S4. Experimental and calculated powder X-ray diffraction patterns for Rb₄V₆Te₃O₂₄

S5. Thermogravimetric plots for K₄V₆Te₃O₂₄ and Rb₄V₆Te₃O₂₄

S6. Bond strain index (BSI), global instability index (GII) and bond valence data for $K_4Te_3V_6O_{24}$ and $Rb_4Te_3V_6O_{24}$

S1. ORTEP (50% probability level ellipsoids) diagrams for the VO₄, TeO₃ and TeO₆ polyhedra and the KO₆, KO₁₀ polyhedra for $K_4V_6Te_3O_{24}$

Symmetry transformations used to generate equivalent atoms:

#1 x-y+1/3,-y+2/3,-z+1/6 #2 y+1/3,x-4/3,-z+1/6 #3 -x+y+2,-x+2,z #4 -x+7/3,-x+y+5/3,-z+1/6 #5 -y+1,x-y-1,z #6 -x+2,-y,-z #7 -x+y+2,-x+1,z #8 y+1,-x+y+1,-z #9 x-y,x-1,-z #10 x-y-2/3,-y+2/3,-z+1/6 #11 x-1,y,z #12 -x+y+1,-x+1,z #13 -y+1,x-y,z #14 -y+2,x-y,z #15 x+1,y,z S2. ORTEP (50% probability level ellipsoids) diagrams for the VO₄, TeO₃ and TeO₆ polyhedra and the RbO₆, RbO₁₀ polyhedra for $Rb_4V_6Te_3O_{24}$

Symmetry transformations used to generate equivalent atoms: #1 x-y+1/3,-y+2/3,-z+1/6 #2 y+1/3,x-4/3,-z+1/6 #3 -x+y+2,-x+2,z #4 -x+7/3,-x+y+5/3,-z+1/6 #5 -y+1,x-y-1,z #6 -x+2,-y,-z #7 -x+y+2,-x+1,z #8 y+1,-x+y+1,-z #9 x-y,x-1,-z #10 x-y-2/3,-y+2/3,-z+1/6 #11 x-1,y,z #12 -x+y+1,-x+1,z #13 -y+1,x-y,z #14 -y+2,x-y,z #15 x+1,y,z

S4. Experimental and calculated powder X-ray diffraction patterns for Rb₄V₆Te₃O₂₄

S5.Thermogravimetric plots for K₄V₆Te₃O₂₄, Rb₄V₆Te₃O₂₄.

S6.	Bond strain in	ndex (BSI),	global instabi	lity index (GII) and b	ond valence	data for
K_4T	$V_{6}O_{24}$ and $V_{6}O_{24}$	$Rb_4Te_3V_6O_2$	4				

(Compound	K ₄ V ₆ Te ₃ O ₂₄	Rb ₄ V ₆ Te ₃ O ₂₄	
BSI		0.076	0.072	
	GII	0.146	0.141	
	Te ⁴⁺	3.80	3.80	
	Te ⁶⁺	6.16	6.08	
	V ⁵⁺	5.06	5.10	
BVS	O (1) ² ·	2.38	2.37	
	O(2) ²⁻	2.09	2.09	
	$O(3)^{2}$	1.89	1.92	
	O(4) ²⁻	1.54	1.57	