# Dynamic Behaviour of Ru and Ru-Pt complexes containing tetrahedron-P4 Ligand 

Vincenzo Mirabello, Maria Caporali, Vito Gallo, Luca Gonsalvi, Andrea Ienco, Mario<br>Latronico, Piero Mastrorilli, Maurizio Peruzzini*

## Supporting information

## Experimental Details

General details. All reactions and manipulations were carried out under nitrogen using standard Schlenk glassware and techniques. Dichloromethane was purified by distillation over $\mathrm{CaH}_{2}$. Literature methods were used for the preparation of $\left[\mathrm{Ru}(\mathrm{dppm})_{2}(\mathrm{H})_{2}\right],{ }^{\mathrm{S} 1} \quad\left[\mathrm{Ru}(\mathrm{dppm})_{2}(\mathrm{H})\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{H}_{2}\right)\right] \mathrm{BF}_{4},{ }^{\mathrm{S} 2}$ and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]^{\mathrm{S} 3}$. Deuterated solvents (Aldrich) were pre-treated with three freeze-thaw pump cycles before use, and kept under an inert atmosphere.

Solution multinuclear NMR spectra were recorded on a BRUKER AVANCE 400 spectrometer, equipped with a variable temperature control unit. ${ }^{1} \mathrm{H}$ chemical shifts are referenced to tetramethylsilane (TMS), ${ }^{31} \mathrm{P}$ chemical shifts are referenced to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4},{ }^{195} \mathrm{Pt}$ chemical shifts are referenced to $\mathrm{H}_{2} \mathrm{PtCl}_{6}$.

## Experimental Section

Synthesis of trans-[Ru(dppm) $\left.\mathbf{2}_{\mathbf{2}}(\mathbf{H})\left(\boldsymbol{\eta}^{\mathbf{1}}-\mathbf{P}_{4}\right)\right] \mathbf{B F}_{4}\left([\mathbf{2}] \mathrm{BF}_{4}\right)$. A solution of white phosphorus in THF $(0.10 \mathrm{M}, 2.29 \mathrm{~mL}, 0.229 \mathrm{mmol})$ was syringed into a solution of trans- $\left[\mathrm{Ru}(\mathrm{dppm})_{2}(\mathrm{H})\left(\eta^{2}-\mathrm{H}_{2}\right)\right] \mathrm{BF}_{4}$ ( $200 \mathrm{mg}, 0.229 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}$ ). After 15 minutes the resulting dark brown solution was concentrated under vacuum. Addition of 20 mL of diethyl ether gave an ivory colored solid which was filtered off and washed with toluene 25 mL . Yield: $84 \%, 209 \mathrm{mg}$. Crystals suitable for X-ray analysis were obtained from a diluted $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane (1:1) solution by slow concentration under nitrogen. The crystals were filtered off and dried in the air. El. Anal. (\%) for $\mathrm{C}_{50} \mathrm{H}_{45} \mathrm{BF}_{4} \mathrm{P}_{8} \mathrm{Ru}$ (1081.56), calcd: C, 55.53 ; H, 4.19; found: C, $55.71 ; \mathrm{H}, 4.25$. ESI-MS m/z (\%): 995.07 (35.69). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 295 \mathrm{~K}$ ): $\delta=7.91-6.86$ (m, $40 \mathrm{H}, \mathrm{Ph}$ ), 4.88 (br s, $2 \mathrm{H}, \mathrm{CH}_{2}$ ), 4.56 (bs, 2H, $\mathrm{CH}_{2}$ ), $-3.69 \mathrm{ppm}\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{Ru}-\mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{Ptrans}}=162 \mathrm{~Hz}\right.$ ). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 295 \mathrm{~K}\right): \delta$ $=-2.5\left(\mathrm{~d}, 4 \mathrm{P}, \mathrm{P}_{\mathrm{A}},{ }^{1} \mathrm{~J}_{\mathrm{PAPM}}=23 \mathrm{~Hz}\right),-373.4\left(\mathrm{q}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{M}}{ }^{1} \mathrm{~J}_{\mathrm{PMPQ}}=224 \mathrm{~Hz}\right),-492.5 \mathrm{ppm}\left(\mathrm{d}, 3 \mathrm{P}, \mathrm{P}_{\mathrm{Q}}\right.$ $\left.{ }^{1} \mathrm{~J}_{\mathrm{PMPQ}}=224 \mathrm{~Hz}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{Ru}-\mathrm{H}) 1975 \mathrm{~cm}^{-1}$.

Synthesis of trans-[\{Ru(dppm$\left.\left.)_{\mathbf{2}}(\mathbf{H})\right\}\left(\boldsymbol{\mu}, \boldsymbol{\eta}^{\mathbf{1}: \mathbf{2}} \mathbf{-} \mathbf{P}_{4}\right)\left\{\mathbf{P t}\left(\mathbf{P P h}_{3}\right)_{\mathbf{2}}\right\}\right] \mathbf{B F}_{4}\left([\mathbf{3}] \mathrm{BF}_{4}\right)$. Solid $\left[\operatorname{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $(140 \mathrm{mg}, 0.183 \mathrm{mmol})$ was added portion-wise to a solution of [2]BF $4(200 \mathrm{mg}, 0.183 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under nitrogen at room temperature. After stirring for 5 min , the solution was concentrated under vacuum and the product was isolated as pale brown solid by addition of diethyl ether ( 10 mL ). Yield $220 \mathrm{mg}(66 \%)$. El. Anal. (\%) for $\mathrm{C}_{86} \mathrm{H}_{75} \mathrm{BF}_{4} \mathrm{P}_{10} \mathrm{RuPt}$ (1801.21), calcd: C,57.35; H, 4.20; found: C, 57.04; H, 4.24. ESI-MS m/z (\%): $1713.45(86)\left[\left\{\operatorname{Ru}(\mathrm{dppm})_{2}(\mathrm{H})\right\}\left(\mu, \eta^{1: 2}-\right.\right.$ $\left.\left.\mathrm{P}_{4}\right)\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right\}\right]^{+} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 180 \mathrm{~K}$ ): $\delta=7.61-6.72(\mathrm{~m}, 40 \mathrm{H}, \mathrm{Ph}), 5.01(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, $\mathrm{CH}_{2}$ ), 4.53 (bs, 2H, CH2), -5.48 (br d, $1 \mathrm{H}, \mathrm{Ru}-\mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{Ptrans}}=107 \mathrm{~Hz}$ ). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 162 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 180 \mathrm{~K}\right): \delta=23.9\left(\mathrm{br}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{Z}},{ }^{1} \mathrm{~J}_{\mathrm{PZPt}}=2270 \mathrm{~Hz}\right) ;-2.3\left(\mathrm{~d}, 4 \mathrm{P}, \mathrm{P}_{\mathrm{A}},{ }^{2} \mathrm{~J}_{\mathrm{PAPM}}=21 \mathrm{~Hz}\right) ;-213.2(\mathrm{pq}$, $\left.1 \mathrm{P}, \mathrm{P}_{\mathrm{M}},{ }^{1} \mathrm{~J}_{\mathrm{PMPS}}={ }^{1} \mathrm{~J}_{\mathrm{PM}-\mathrm{PQ}}=201 \mathrm{~Hz}\right) ;-259.9\left(\mathrm{~m}, 2 \mathrm{P}, \mathrm{P}_{\mathrm{S}}\right),-346.0\left(\mathrm{dt}, 1 \mathrm{P}, \mathrm{P}_{\mathrm{Q}},{ }^{1} \mathrm{~J}_{\mathrm{PSPQ}}=96 \mathrm{~Hz}\right) .{ }^{195} \mathrm{Pt}$ NMR ( $86.01 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 180 \mathrm{~K}$ ): $\delta=-3987\left(\mathrm{tt}, \mathrm{Pt},{ }^{1} \mathrm{~J}_{\mathrm{PZPt}}=2270 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{PSPt}}=820 \mathrm{~Hz}\right.$ ). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{Ru}-\mathrm{H}) 1966 \mathrm{~cm}^{-1}$.

VT-NMR monitoring of [3]BF4. Complex [2] $\mathrm{BF}_{4}(35 \mathrm{mg}, 0.032 \mathrm{mmol})$ and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $(24,5 \mathrm{mg}, 0.032 \mathrm{mmol})$ were placed into a 5 mm NMR tube under an inert atmosphere. $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.5$ mL ) was transferred into the tube using a Hamilton ${ }^{\circledR}$ microsyringe. The resulting solution (complex [3] $\mathrm{BF}_{4}$ ) was brought to 180 K using a liquid nitrogen-acetone bath and the tube was then inserted into the NMR probe head pre-cooled at the same temperature. Subsequently, the probe was warmed slowly to room temperature in steps of 10 K each, and sets of multinuclear NMR data were collected at each step (Fig. S1-S2).


Figure S1. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of complex $[3] \mathrm{BF}_{4}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 180 \mathrm{~K}\right)$


Figure S2. Portion of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of complex [3] $\mathrm{BF}_{4}$ (in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ ) recorded at 180 K (a), 258 K (b), 298 K (c), 308 K (d).


Figure S3. Experimental (black) and calculated (red) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of complex [3]BF ${ }_{4}$ (200 K). Calculated spectrum was obtained by DAISY package in TOPSPIN 2.1 PL4 software.


Figure S4. Portion ( ${ }^{1} \mathrm{H}$ hydride region) of the ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMQC spectrum of $[3] \mathrm{BF}_{4}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 258 \mathrm{~K}\right)$


Figure S5. ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $[3] \mathrm{BF}_{4}\left(298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$


Figure S6. High-field part of the ${ }^{31} \mathrm{P}$ EXSY 2D-NMR spectrum of $[3] \mathrm{BF}_{4}\left(\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}, \mathrm{~T}=32\right.$ ${ }^{\circ} \mathrm{C}, \tau_{\mathrm{m}}=50 \mathrm{~ms}, 162 \mathrm{MHz}$ ).


Figure S7. Enthalpy profiles for the additional motion, of platinum $\eta^{2}-\eta^{1}$ coordinated to three phosphorus atoms in complex 3'.

Activation parameters for the exchange processes. Exchange constants ( $K_{\text {obs }}$ ) were determined by a line shape analysis performed with Dynamic NMR package in TOPSPIN 2.1 PL4 software.

Activation parameters were extracted by $\ln \left(\frac{\mathrm{k}_{\text {obs }} \cdot \mathrm{h}}{\mathrm{k}_{\mathrm{B}} \cdot \mathrm{T}}\right)$ vs $1 / \mathrm{T}$ plot according to equation 1 .

$$
\ln \left(\frac{\mathrm{k}_{\mathrm{obs}} \cdot \mathrm{~h}}{\mathrm{k}_{\mathrm{B}} \cdot \mathrm{~T}}\right)=-\frac{\Delta \mathrm{H}^{\neq}}{\mathrm{R} \cdot \mathrm{~T}}+\frac{\Delta \mathrm{S}^{\neq}}{\mathrm{R}}
$$

Equation 1

## Complex $2^{+}$



Complex $3^{+}$


## Computational details

DFT Calculations. Structural optimizations were carried out at the hybrid density functional theory (DFT) using the Gaussian03 suite of programs. ${ }^{\text {S4 }}$ The method used was the Becke's three-parameter hybrid exchange-correlation functional ${ }^{\mathrm{S} 5}$ containing the nonlocal gradient correction of Lee, Yang and Parr (B3LYP). ${ }^{\mathrm{S} 6}$ Calculations of the frequencies were performed to validate the nature of the optimized stationary points. The Stuttgart/Dresden effective core potential was used for metals. ${ }^{\text {S7 }}$ The basis set used for the remaining atomic species was the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p}) .{ }^{\text {S8 }}$

Table S1: Free Gibbs energies, enthalpies and internal energies differences in $\mathrm{kcal} / \mathrm{mol}$ for the calculated models in gas phase. The effect of the zero-point vibrations was considered in the reported values.

|  | $\Delta \mathrm{G}$ | $\Delta \mathrm{H}$ | $\Delta \mathrm{E}$ |
| :---: | :---: | :---: | :---: |
| 2'a ${ }^{+}-\mathbf{2}^{\prime} \mathrm{c}^{+}$ | 9.0 | 8.3 | 8.2 |
| 2 $\mathbf{a}^{+}{ }^{-} \mathbf{2}^{\prime} \mathrm{ts}^{+}$ | 10.6 | 9.1 | 9.4 |
| 2'c ${ }^{+}-\mathbf{2}^{\prime} \mathrm{ts}^{+}$ | 1.5 | 0.7 | 1.1 |
| 3' $\mathbf{a}^{+}-3{ }^{\prime} \mathbf{c}^{+}$ | 10.7 | 9.4 | 9.7 |
| 3' ${ }^{+}{ }^{+}-3$ 'ts $1^{+}$ | 11.7 | 9.6 | 9.9 |
| $\mathbf{3}^{\prime} \mathbf{c}^{+}-3^{\prime} \mathrm{ts}^{+}{ }^{+}$ | 1.0 | 0.2 | 0.2 |
| $3^{\prime} \mathbf{c}^{+}-3{ }^{\prime} \mathbf{t s 3}^{+}$ | 19.5 | 16.0 | 16.7 |

$\mathbf{2 '}^{\prime} \mathbf{a}^{+}$and $\mathbf{2}^{\mathbf{\prime}} \mathbf{b}^{+}$
Energy $=-2909.6626088$
Zero-point vibrational energy 394840.5 (Joules/Mol)
Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy= 0.150387 (Hartree/Particle)
0.169155

Thermal correction to Gibbs Free Energy= 0.101091
Sum of electronic and zero-point Energies= -2909.512222
Sum of electronic and thermal Energies= -2909.494398
Sum of electronic and thermal Enthalpies $=\quad$-2909.493454
Sum of electronic and thermal Free Energies $=\quad-2909.561518$

Ru,-0.0299495238,0.0039315815,-0.16065191
H,0.0426091585,0.1013459908,1.4495625993
P,-0.1335403613,-0.1306796364,-2.5628646592
P,1.0932404851,-0.0397214383,-4.3831484154
P,-0.9543582511,0.857070966,-4.345356971

```
P,-0.708117376,-1.3702386733,-4.2795155411
P,-1.186173449,2.045897888,0.070205
P,-2.2959864513,-0.4921588877,0.2748916429
P,1.1505081627,-2.0058548465,0.2113320863
P,2.2621802293,0.5312803499,0.0069132071
C,-2.7819758597,1.2733265498,0.6827770188
H,-2.8791161537,1.4026201446,1.7638542581
H,-3.6940730965,1.6333974878,0.2021651465
C,2.7906716007,-1.1741303276,0.5820829908
H,2.9824493426,-1.1718110613,1.6582424629
H,3.658791707,-1.5956997485,0.0710109437
H,-0.8653071327,3.0464057762,1.0119637175
H,-1.5898823503,2.8702508885,-1.0049327881
H,-2.7406797962,-1.2673766987,1.3666246111
H,-3.2478194213,-0.9015077547,-0.6867667278
H,1.4642862206,-2.9694602051,-0.7742327094
H,0.9136127986,-2.8736752217,1.2982448134
H,2.8109429532,1.4325303849,0.9436600209
H,3.1090425646,0.8051154917,-1.0914047973
```

2' $\mathrm{c}^{+}$
Energy =-2909.6489318
Zero-point vibrational energy 393399.0 (Joules/Mol)
Zero-point correction=
0.149838 (Hartree/Particle)
Thermal correction to Energy= 0.167839
Thermal correction to Enthalpy= 0.168784
Thermal correction to Gibbs Free Energy= 0.101823
Sum of electronic and zero-point Energies= -2909.499094
Sum of electronic and thermal Energies $=\quad$-2909.481092
Sum of electronic and thermal Enthalpies $=\quad$-2909.480148
Sum of electronic and thermal Free Energies $=\quad-2909.547109$

Ru, $0.0058362616,0.0893671851,-0.2448439267$
H,0.0308159936,0.0788833306,1.355456611
P,0.433527278,1.1707808347,-2.7797982082
P,0.9596868363,-0.3300628324,-4.3317970201
P,-1.0738975897,0.5615243279,-4.2945638089
P,-0.5003072625,-0.9592364953,-2.7792641323
P,-1.1563060158,2.1137939488,0.1480579918
P,-2.271193303,-0.4243584985,0.148447486
P,1.1792987208,-1.9397300833,0.0855987687
P,2.2938588055,0.5985267818,0.0846196958
C,-2.7522988526,1.3009728981,0.6991161503
Н,-2.8521508209,1.3449929098,1.7866802429
Н,-3.6617128452,1.7003629738,0.2454122059

C,2.7915565812,-1.1336595922,0.5978098266
Н,2.9247965754,-1.1917757269,1.6811251854
Н,3.6865485611,-1.5268417463,0.1111989439
Н,-0.8189538186,3.0187789014,1.1771839126
Н,-1.559149702,3.042986215,-0.8395937362
Н,-2.7096544951,-1.2848749735,1.1776019236
Н,-3.2277991845,-0.7563579614,-0.8393804406
H,1.5513941341,-2.855516363,-0.9263318815
$\mathrm{H}, 0.8737723433,-2.8583969616,1.1125314069$
H,2.7636657456,1.4457306441,1.1109885713
H,3.2198670532,0.9436822832,-0.9275617682

2'ts ${ }^{+}$

Energy $=-2909.6467673$
****** 1 imaginary frequencies (negative Signs) ${ }^{* * * * * * ~}$
Zero-point vibrational energy 392517.9 (Joules/Mol)
Zero-point correction=
0.149502 (Hartree/Particle)

Thermal correction to Energy=
0.166816

Thermal correction to Enthalpy= 0.167760

Thermal correction to Gibbs Free Energy= 0.102102
Sum of electronic and zero-point Energies= -2909.497265
Sum of electronic and thermal Energies $=\quad-2909.479952$
Sum of electronic and thermal Enthalpies $=\quad-2909.479007$
Sum of electronic and thermal Free Energies $=\quad-2909.544665$

Ru,-0.0187243651,0.030296565,-0.1703361945
H,0.0242934391,0.0592281397,1.4224588284
P,0.5447654578,1.4404142685,-3.1163712138
P,1.0035494816,-0.2361250453,-4.4663124385
P,-1.041227291,0.6627604259,-4.4291600823
P,-0.3562244102,-0.6244337194,-2.7498238196
P,-1.1788661764,2.0661344265,0.1223141418
P,-2.2899072659,-0.4732269931,0.240105342
P,1.1583413028,-1.9885349026,0.1740350737
P,2.2738812217,0.5485852739,0.0557607498
C,-2.7664341331,1.2730365979,0.7306216399
Н,-2.8417638202,1.3554042688,1.81805682
Н,-3.6868577473,1.6551553235,0.2841354005
C,2.7817325704,-1.165160793,0.6254123274
H,2.9266914402,-1.1794125496,1.7088148004
H,3.6714180013,-1.5786028185,0.1457601568
Н,-0.8458920736,3.0344898396,1.0940937103
Н,-1.607027298,2.9371946168,-0.9077716735
Н,-2.7387224819,-1.2959787459,1.295668268
Н,-3.2473365412,-0.8309648161,-0.7379261117
H,1.5112521324,-2.9212894176,-0.8292702791

H,0.8891321117,-2.8909210994,1.2256077083
H,2.7935809734,1.435920398,1.0229787304
H,3.1715464717,0.8356027563,-1.0001578848
$\mathbf{3}^{\mathbf{\prime}} \mathbf{a}^{+}$and $\mathbf{3}^{\mathbf{\prime}} \mathbf{b}^{+}$

Energy =-3715.4588596

| Zero-point vibrational energy | 540813.8 |
| :--- | :---: |
| (Joules/Mol) |  |
| Zero-point correction $=$ | 0.205985 (Hartree/Particle) |
| Thermal correction to Energy $=$ | 0.232665 |
| Thermal correction to Enthalpy= | 0.233610 |
| Thermal correction to Gibbs Free Energy= | 0.141831 |
| Sum of electronic and zero-point Energies $=$ | -3715.252874 |
| Sum of electronic and thermal Energies= | -3715.226194 |
| Sum of electronic and thermal Enthalpies $=$ | -3715.225250 |
| Sum of electronic and thermal Free Energies= | -3715.317029 |

Ru,0.0821821605,-0.0316934769,0.3109733078
H,-0.1756186811,-0.4550006982,1.8600976555
P,0.4980044836,0.5662859067,-1.9901749389
P,1.8373788821,1.9271382539,-3.1479961776
P,-0.3008653206,0.0745502873,-4.0168010765
P,1.8713279336,-0.3428341452,-3.4328041375
P,-0.3279160008,2.1330136623,1.1290417609
P,-2.243560417,0.304680095,0.3092471068
P,0.4072573847,-2.3424052496,0.0110624154
P,2.3260139542,-0.5118343761,0.832656441
C,-2.1869496191,1.9157014826,1.2705222533
Н,-2.4726140309,1.7478224747,2.312096838
Н,-2.7910541666,2.7302781237,0.8652153535
C,2.1344843485,-2.3760239341,0.7431113715
H,2.123939578,-2.814058553,1.7443386922
H,2.8843443297,-2.8910908793,0.1390791457
H,0.0869632334,2.6085033049,2.3922091581
Н,-0.1809727623,3.3326418865,0.3928064519
Н,-3.175830117,-0.5039774028,0.9952975998
Н,-3.0271208988,0.6136148847,-0.8278835466
H,0.5531210658,-2.9875998078,-1.2382907241
Н,-0.3053091019,-3.3496036647,0.6973834346
H,2.929016624,-0.2608635788,2.0842502862
H,3.4343002935,-0.2407847501,-0.0019773918
Pt,0.2649558701,2.2137741894,-4.9295467871
P,-1.4029917252,2.0795194173,-6.6325512182
P,1.1869750062,4.3156553937,-5.5867064751
Н,2.5815952383,4.3486184908,-5.8039048849
Н,1.091695966,5.3819937726,-4.6652123698
H,0.772512314,5.0065790871,-6.7497027774
Н,-1.4073112946,0.9063312227,-7.4179995439
Н,-1.5197457921,3.0333866758,-7.6710142104

| H,-2.7522197382,2.0592979051,-6.2147880125 |  |
| :--- | :---: |
| $\mathbf{3 ' c}^{+}$ |  |
| Energy $=-3715.4428504$ |  |
| Zero-point vibrational energy | 539651.3 (Joules/Mol) |
| Zero-point correction= | 0.205542 (Hartree/Particle) |
| Thermal correction to Energy= | 0.232507 |
| Thermal correction to Enthalpy= | 0.233451 |
| Thermal correction to Gibbs Free Energy= | 0.142880 |
| Sum of electronic and zero-point Energies= | -3715.237308 |
| Sum of electronic and thermal Energies= | -3715.210344 |
| Sum of electronic and thermal Enthalpies= | -3715.2102100 |
| Sum of electronic and thermal Free Energies= | -3715.299971 |

Ru,2.8363336803,0.0179748388,-0.0019034886
H,4.4440710751,0.0247230733,-0.0013876743
P,0.2776777664,0.0273198245,-1.1414579076
P,-0.9990657156,-1.480904109,-0.029994867
P,-1.0110089664,1.4854429239,0.0218616247
P,0.2768079391,-0.0124624362,1.1347308385
P,3.1866073699,-1.8856934592,1.3512666946
P,3.1877555185,-1.8367037074,-1.4209653771
P,3.1721712863,1.924150734,-1.3549471439
P,3.1715215866,1.8757021672,1.4172876105
C,3.6731915639,-3.0270232704,-0.0552689082
Н,4.7501715624,-3.2124579828,-0.0580880829
Н,3.1495163843,-3.9851687998,-0.072428526
C,3.6484135349,3.0696464208,0.0517022623
H,4.723856636,3.2637777838,0.055357645
H,3.1169920149,4.0235281397,0.0682397293
Н,4.2367973659,-1.989411159,2.2900166162
H,2.1974534159,-2.6088026636,2.058711512
Н,4.2388837792,-1.906857111,-2.3617606496
Н,2.1994489905,-2.5344426796,-2.1546049186
H,2.177911861,2.6391699508,-2.0634712057
H,4.222308716,2.03588901,-2.2928263286
H,4.2212645388,1.9546464463,2.3589354282
H,2.1769787989,2.5656043306,2.1499003315
Pt,-2.8697753306,-0.005205971,-0.005938809
P,-4.4628089347,1.7656466503,0.0250546395
P,-4.4484939227,-1.7888291341,-0.0370820289
Н,-4.4361873975,-2.6805240741,1.057932331
Н,-4.3331567087,-2.7325566267,-1.0809478458
Н,-5.842833026,-1.5615502242,-0.1089059402
Н,-4.4576051448,2.6185250305,1.1506213652
Н,-5.8552790491,1.5298110284,-0.0549776894
Н,-4.3551431888,2.7462430552,-0.9851032371
$\mathbf{3 ' t s}^{\mathbf{+}}$ and $\mathbf{3 ' t s}^{\mathbf{\prime}}{ }^{+}$

Energy $=-3715.4424832$
****** 1 imaginary frequencies (negative Signs)

| Zero-point vibrational energy | 539291.4 (Joules/Mol) |
| :--- | :---: | :---: |
| Zero-point correction= | 0.205405 (Hartree/Particle) |
| Thermal correction to Energy $=$ | 0.231559 |
| Thermal correction to Enthalpy $=$ | 0.232503 |
| Thermal correction to Gibbs Free Energy= | 0.144046 |
| Sum of electronic and zero-point Energies= | -3715.237078 |
| Sum of electronic and thermal Energies= | -3715.210924 |
| Sum of electronic and thermal Enthalpies $=$ | -3715.209980 |
| Sum of electronic and thermal Free Energies= | -3715.298437 |

Ru,2.9128246322,0.017008711,0.0599778792
H,4.5025644715,0.0273604205,-0.1675591192
P,0.0414613091,0.0226423472,-0.9655780614
P,-0.9930188218,-1.4873509908,0.3488480746
P,-1.0050364407,1.4790104299,0.3989166382
P, $0.4871486735,-0.0129533835,1.2514351781$
P,3.4463353906,-1.8831623776,1.3507744205
P,3.040255695,-1.8395069704,-1.3910117215
P,3.0247017027,1.9233863825,-1.3261808734
P,3.4312144417,1.8758539162,1.4155007428
C,3.7436511575,-3.0188743308,-0.1120742679
Н,4.8138912756,-3.1725450407,-0.2716473477
Н,3.25109763,-3.9918663015,-0.0550515924
C,3.7185557501,3.0637939762,-0.0073183228
H,4.7874095625,3.2319380134,-0.161500704
Н,3.2178103043,4.0300371527,0.0832453842
H,4.607421776,-1.9962732718,2.1473147361
H,2.5527054354,-2.6082947315,2.1741368299
Н,3.9270412801,-1.9137766875,-2.4880039912
H,1.9546651437,-2.5534253227,-1.9519131643
Н,1.9331074742,2.6471545854,-1.8622481308
H,3.9106260198,2.0427633841,-2.4198837963
H,4.5917223529,1.9709072658,2.2152336085
H,2.5320751532,2.5647621681,2.2636026602
Pt,-2.8296109081,-0.0176530226,0.7338449799
P,-4.396835462,1.7482878194,1.0554764435
P,-4.3822409268,-1.8062019579,0.9958583271
Н,-4.244022289,-2.6155223393,2.145028115
H,-4.3636523603,-2.8221481541,0.01581636
Н,-5.7789713818,-1.591147475,1.0562610394
Н,-4.2665627562,2.5183788076,2.2322099061
Н,-5.7918404404,1.5199923797,1.1063714824
Н,-4.3853288446,2.7977155981,0.1112662871
3'ts3 ${ }^{+}$
Energy $=-3715.4325158$

| $* * * * * * \quad 1$ imaginary frequencies (negative Signs) | $* * * * * *$ |
| :--- | :---: |
| Zero-point vibrational energy | 541477.3 (Joules/Mol) |
| Zero-point correction= | 0.206238 (Hartree/Particle) |
| Thermal correction to Energy $=$ | 0.231828 |
| Thermal correction to Enthalpy $=$ | 0.232772 |
| Thermal correction to Gibbs Free Energy= | 0.146571 |
| Sum of electronic and zero-point Energies $=$ | -3715.226278 |
| Sum of electronic and thermal Energies= | -3715.200688 |
| Sum of electronic and thermal Enthalpies $=$ | -3715.199743 |
| Sum of electronic and thermal Free Energies $=$ | -3715.285945 |

Ru,-2.8724079572,-0.0054791743,0.035865962
H,-4.5082598995,-0.0138551716,0.1242038438
P,-0.488377282,-0.0018175278,-0.0022212412
P,0.9416205991,1.265563286,-1.1612518171
P,0.9449746757,-0.901917091,-1.461694225
P,0.977381865,-0.2227147461,1.607669563
P,-3.2265665265,-1.7421199145,-1.5065787217
P,-3.0885008324,-2.0077270515,1.2500913077
P,-3.0868795713,1.7279239452,1.6109628868
P,-3.2366214609,1.9933086631,-1.1443556795
C,-3.632345737,-3.0434848702,-0.2169965982
Н,-4.7096164916,-3.2240130608,-0.1802804348
Н,-3.1170477191,-3.9992128789,-0.334440333
C,-3.6506371095,3.018797287,0.3715251969
Н,-4.7302535543,3.1720914849,0.4452327082
Н,-3.1497641748,3.9870012022,0.4379266655
Н,-4.2902250162,-1.7940316246,-2.4336123974
H,-2.2212598591,-2.347160242,-2.2966929216
Н,-4.0613042468,-2.2344670237,2.2477396453
H,-2.0239999683,-2.7465982413,1.8163771491
Н,-2.0186610677,2.3539643106,2.2940273441
Н,-4.0487339957,1.7569006848,2.643917729
Н,-4.3006894931,2.2147228238,-2.0456333487
Н,-2.2364710648,2.7479187943,-1.8012063869
Pt,2.7099513208,-0.0060665953,0.0756387362
P,4.264314191,-0.2505288056,1.8431623618
P,4.3861311418,0.2404520167,-1.6568486698
Н,5.302296494,1.3170496126,-1.6266527947
Н,3.8805044909,0.4231174266,-2.9615403657
Н,5.3075483509,-0.7981371173,-1.9246202311
H,5.1782470341,0.7939669035,2.1083965597
H,5.1781319581,-1.3279356289,1.81638689
H,3.714195427,-0.4273827095,3.1283024362

Crystallographic studies: Data collection for complex trans-[Ru(dppm) $\left.)_{2}(\mathrm{H})\left(\eta^{1}-\mathrm{P}_{4}\right)\right] \mathrm{BF}_{4}$ was carried out on a Oxford Diffraction Xcalibur3 diffractometer equipped with Mo $\mathrm{K}_{\alpha}$ radiation ( $0.71073 \AA$ ). Data were collected at 150 K . Data collection was performed with the program CrysAlis $\mathrm{CCD}^{\mathrm{S} 9}$ and data reduction was carried out with the program CrysAlis $\mathrm{RED}^{\mathrm{S} 10}$. Absorption correction was applied through the program ABSPACK ${ }^{\text {S10 }}$. Crystal data and structure refinement details are given in Table S1. The structure was solved with direct method implemented in the program $\operatorname{Sir} 97^{\text {S11 }}$ and the refinement was completed by full-matrix least squares against $\mathrm{F}^{2}$ using all data implemented in SHELXL ${ }^{\text {S12 }}$. All the non-hydrogen atoms were refined anisotropically. Basal phosphorus atoms of the $\mathrm{P}_{4}$ units show large anisotropic displacement parameters caused by the rotation of the $\mathrm{P}_{4}$ units around the metal-coordinated phosphorus axes. Attempts to refine the disorder did not improve the overall refinement. The hydrogen atoms were set in calculated position and all refined isotropically with thermal factors depending on the ones of the atom to which they are bound. Molecular plots were produced by the program ORTEP3 ${ }^{\text {S13 }}$. All the calculations were performed using the package WINGX ${ }^{\text {S14 }}$. Crystallographic data (excluding structure factors) for the compound reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC 793923. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223-336033; email: deposit@ccdc.cam.ac.uk).

Table S2. Crystal data and structure refinement for trans- $\left[\mathrm{Ru}(\mathrm{dppm})_{2}(\mathrm{H})\left(\eta^{1}-\mathrm{P}_{4}\right)\right] \mathrm{BF}_{4}$.

| Empirical formula | C50 H45 B1 F4 P8 Ru1 |
| :---: | :---: |
| Formula weight | 1081.5 |
| Temperature | 150(2) K |
| Wavelength | $1.54184 \AA$ |
| Crystal system | Monoclinic |
| Space group | P $2_{1 /}$ c |
| Unit cell dimensions | $\mathrm{a}=17.5322(2) \AA$ |
|  | $\mathrm{b}=23.5016(3) \AA$ |
|  | $\mathrm{c}=23.7195(4) \AA$ |
|  | $b=94.9185(13)^{\circ}$. |
| Volume | 9737.3(2) $\AA^{3}$ |
| Z | 8 |
| Density (calculated) | $1.476 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient | $5.513 \mathrm{~mm}^{-1}$ |
| $F(000)$ | 4400 |
| Crystal size | . $30 \times .20 \times .20 \mathrm{~mm}^{3}$ |
| Theta range for data collection | 3.76 to $62.03^{\circ}$. |
| Index ranges | $-9<=\mathrm{h}<=19,-25<=\mathrm{k}<=26,-26<=1<=26$ |
| Reflections collected | 39029 |
| Independent reflections | $14901\left[R_{(\text {int) }}=0.0539\right]$ |
| Completeness to theta $=62.03^{\circ}$ | 97.2 \% |


| Absorption correction | Semi-empirical from equivalents |
| :---: | :---: |
| Max. and min. transmission | 0.332 and 0.139 |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{2}$ |
| Data / restraints / parameters | 14901 / 0 / 967 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.022 |
| Final R indices [ $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ ] | $R_{1}=0.0574, w R_{2}=0.1292$ |
| R indices (all data) | $R_{1}=0.0962, w R_{2}=0.1479$ |
| Largest diff. peak and hole | 1.221 and -0.825 e. $\AA^{-3}$ |
|  |  |

Figure S8. Ball and stick views of the two units of the cations trans- $\left[(\mathrm{dppm})_{2} \operatorname{Ru}(\mathrm{H})\left(\eta^{1}-\mathrm{P}_{4}\right)\right]^{+}, \mathbf{2}^{+}$, emphasizing the different orientations of the $\mathrm{P}_{4}$ ligand respect to the metal fragment.

## REFERENCES

(S1) Hill, S.H.; Holah, D. G. ; Hughes, A. N. Prokopchuk, E.M. Inorg. Chim. Acta 1998, 278, 226.
(S2) Mathew, N.; Jarirdar, B. R.; Ranganathan, A. Inorg. Chem. 2003, 42, 187-197.
(S3) Nagel, U. Chem. Ber. 1982, 115, 1998-1999.
(S4) Frisch M.J.; et al. Gaussian 03, Revision C.02: Gaussian Inc.: Wallingford, CT, 2004.
(S5) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(S6) Lee, C.; Yang, W.; Parr, R. Phys. Rev. 1998, B37, 785.
(S7) Dolg, M.; Stoll, H.; Preuss, H.; Pitzer, R. M. J. Phys. Chem. 1993, 97, 5852.
(S8) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
(S9) CrysAlisCCD, Oxford Diffraction Ltd., Version 1.171.31.2 (release 07-07-2006 CrysAlis171 .NET)
(S10) CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.31.2 (release 07-07-2006 CrysAlis171 .NET)
(S11) Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R., J. Appl. Cryst., 1999, 32, 115;
(S12) Sheldrick, G. M., Acta Cryst. 2008, A64, 112
(S13) Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565.
(S14) Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837-838.

