Systematic study of the formation of the lanthanoid cubane cluster motif mediated by steric modification of diketonate ligands

Philip C. Andrews,^a William J. Gee^a, Peter C. Junk*^a and Jonathan G. MacLellan^a

School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia.

Supplementary information

Additional crystallographic data:

Figure S1: Molecular structure, X-ray data and refinement details for cluster 1.

Figure S2: Molecular structure, X-ray data and refinement details for cluster 2.

 Table S1: Selected bond lengths (Å) and angles (°) for 3.

Table S2: Selected bond lengths (Å) and angles (°) for 7.

 Table S3: Selected bond lengths (Å) and angles (°) for 8.

 Table S4: Selected bond lengths (Å) and angles (°) for 9.

Mechanistic considerations:

Figure S3: Examples of 'capping and peripheral faces for clusters 3,7 and 8.

Figure S4: Mass spectrum of 3 highlighting evidence of intermediate dimer.

Figure S5: Mass spectrum of 8 highlighting evidence of intermediate dimer.

Figure S6: Mass spectrum of 9 highlighting evidence of intermediate dimer.

Molecular structure of cluster 1.

$[Nd_4(\mu_3-OH)_2(pmc)_{10}]$ (1)

Empirical formula Formula weight Temperature Wavelength Crystal system, space group

Unit cell dimensions

Volume F(000) Crystal size Theta range for data collection Limiting indices Reflections collected / unique Completeness to theta = 25.00 Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F^2 Final R indices [I>2sigma(I)] R indices (all data) C₁₂₀H₁₁₂Nd₄O₂₂ 2483.06 100(2) K 0.773747861 Å (synchrotron) Triclinic, *P*-1

a = 12.378(3) Å	$\alpha = 66.73(3) \text{ deg.}$
b = 15.353(3) Å	$\beta = 69.06(3) \text{ deg.}$
c = 15.713(3) Å	$\gamma = 74.93(3) \text{ deg.}$

2537.3(9) Å^3 1248 0.03 x 0.03 x 0.02 mm 1.84 to 25.00 deg. -13<=h<=13, -16<=k<=16, -17<=l<=17 25247 / 6477 [R(int) = 0.0344] 93.6 % Semi-empirical from equivalents Full-matrix least-squares on F^2 6477 / 2 / 659 1.018 R1 = 0.0405, wR2 = 0.1073 R1 = 0.0500, wR2 = 0.1143

Molecular structure of cluster 2.

$[\text{HNEt}_3][\text{Er}_9(\mu_4\text{-O})_2(\mu_3\text{-OH})_8(\text{pmc})_{16}]$ (2)

C ₁₉₂ H ₁₈₄ Er ₉ O ₄₂ 4668.73 173(2) K 0.773747861 Å (synchrotron) Tetragonal, <i>I</i> 4
$a = 21.708(3)$ Å $\alpha = 90$ deg. $b = 21.708(3)$ Å $\beta = 90$ deg. $c = 25.682(5)$ Å $\gamma = 90$ deg.
12103(3) Å^3 4568
0.09 x 0.08 x 0.06 mm 1 23 to 24 99 deg
$-19 \le h \le 25, -18 \le k \le 25, -23 \le l \le 30$ 22589 / 10010 [R(int) = 0.1029]
99.9 %
Full-matrix least-squares on F ²
0.996
R1 = 0.0660, wR2 = 0.1572 R1 = 0.1035, wR2 = 0.1712

Bond Lengths, Å			
Er(1)-O(1)	2.365(7)	Er(2)-O(2)	2.361(7)
Er(1)-O(4)	2.366(8)	Er(2)-O(3)	2.426(10)
Er(3)-O(1)	2.337(8)	Er(4)-O(2)	2.345(8)
Er(3)-O(4)	2.307(8)	Er(4)-O(3)	2.310(9)
Er(1)-O(2)	2.357(7)	Er(2)-O(2)	2.361(7)
Er(3)-O(3)	2.365(8)	Er(4)-O(4)	2.406(8)
Bond Angles, °			
O(1)-Er(1)-O(4)	74.0(3)	O(2)-Er(2)-O(3)	74.0(3)
O(4)-Er(3)-O(1)	75.7(3)	O(3)-Er(4)-O(2)	76.5(3)
O(2)-Er(1)-O(1)	69.1(2)	O(1)-Er(2)-O(2)	69.7(2)
O(2)-Er(1)-O(4)	68.7(3)	O(1)-Er(2)-O(3)	68.9(3)
O(1)-Er(3)-O(3)	69.8(3)	O(3)-Er(4)-O(4)	70.2(3)
O(4)-Er(3)-O(3)	71.0(3)	O(2)-Er(4)-O(4)	68.2(3)

Table S1: Selected bond lengths (Å) and angles (°) for 3.

Table S2: Selected bond lengths (Å) and angles (°) for 7.

Bond Lengths, Å			
Er(1)-O(1)	2.305(4)	Er(1)-O(6)	2.236(3)
Er(1)-O(1) ^a	2.330(3)	Er(1)-O(7)	2.306(4)
Er(1)-O(1) ^b	2.375(5)	Er(1)-Er(1) ^a	3.6413(3)
Er(1)-O(2)	2.269(4)	Er(1)-Er(1) ^b	3.8197(5)
Er(1)-O(3)	2.255(4)	Er(1)-Er(1) ^c	3.6413(3)
Bond Angles, °			
O(1) ^a -Er(1)-O(1)	74.67(13)	O(1) ^a -Er(1)-O(1) ^b	73.35(13)
O(1) ^b -Er(1)-O(1)	69.86(11)		

Symmetry Transformations: a = -x+1, -y+1, z; b = -y+1, x, -z+2; c = y, -x+1, -z+2.

Bond Lengths, Å			
Er(1)-O(1)	2.369(12)	Er(3)-O(1)	2.311(11)
Er(1)-O(2)	2.319(10)	Er(3)-O(3)	2.313(13)
Er(1)-O(3)	2.330(10)	Er(3)-O(4)	2.346(11)
Er(2)-O(1)	2.333(11)	Er(4)-O(2)	2.353(9)
Er(2)-O(2)	2.302(11)	Er(4)-O(3)	2.341(11)
Er(2)-O(4)	2.337(10)	Er(4)-O(4)	2.362(11)
Bond Angles, °			
O(2)-Er(1)-O(3)	68.5(3)	O(2)-Er(1)-O(1)	75.0(4)
O(3)-Er(1)-O(1)	72.4(4)	O(1)-Er(3)-O(4)	68.1(4)
O(2)-Er(2)-O(1)	76.1(4)	O(3)-Er(3)-O(4)	77.1(4)
O(2)-Er(2)-O(4)	76.2(4)	O(3)-Er(4)-O(2)	67.7(3)
O(1)-Er(2)-O(4)	67.9(4)	O(3)-Er(4)-O(4)	76.2(4)
O(1)-Er(3)-O(3)	73.8(4)	O(2)-Er(4)-O(4)	74.7(4)

 $Table \ S3: \ Selected \ bond \ lengths \ (\text{\AA}) \ and \ angles \ (^{\circ}) \ for \ 8.$

Table S4: Selected bond lengths (Å) and angles (°) for 9.

Bond Lengths, Å			
Er(1)-O(1)	2.350(10)	Er(2)-O(2)	2.315(8)
Er(1)-O(4)	2.313(10)	Er(2)-O(3)	2.305(11)
Er(3)-O(4)	2.298(10)	Er(4)-O(1)	2.418(10)
Er(1)-O(2)	2.379(9)	Er(4)-O(3)	2.353(10)
Er(3)-O(3)	2.335(10)	Er(4)-O(4)	2.374(9)
Bond Angles, °			
O(4)-Er(1)-O(1)	78.1(3)	O(2)-Er(2)-O(3)	74.8(3)
O(4)-Er(3)-O(2)	67.9(3)	O(3)-Er(4)-O(1)	67.6(4)
O(1)-Er(1)-O(2)	68.2(3)	O(1)-Er(2)-O(2)	69.6(3)
O(4)-Er(1)-O(2)	67.2(3)	O(1)-Er(2)-O(3)	69.8(3)
O(2)-Er(3)-O(3)	73.7(3)	O(3)-Er(4)-O(4)	68.5(3)
O(4)-Er(3)-O(3)	70.1(3)	O(1)-Er(4)-O(4)	75.6(3)

Figure S3: Examples of 'capping' and 'peripheral' faces for clusters 3,7 and 8.

Erbium cluster **3**:

Erbium cluster 7

Erbium cluster 8

In each instance the capping face is on the left and a peripheral face on the right. The capping face either possesses or resembles a fourfold rotation axis (C_4) while the peripheral faces posses or resembles a twofold rotation axis (C_2) (seen as horizontal here).

Figure S4: Mass spectra of intermediate species for motif 3.

Figure S5: Mass spectra of intermediate species for motif 8.

Figure S5: Mass spectra of intermediate species for motif 9.