Supplementary Material

Density Functional Studies on Dinuclear {Ni^{II}Gd^{III}} and Trinuclear {Ni^{II}Gd^{III}Ni^{II}} Complexes: Magnetic Exchange and Magneto-Structural Maps

Saurabh Kumar Singh, Neeraj KumarTibrewal and Gopalan Rajaraman*

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076. India Fax: (+91)22-2576-7152; Tel: (+91)-22-2576-7183; E-mail: rajaraman@chem.iitb.ac.in

We performed DFT calculations on complexes. The energies, spin density and J values are given in table for dimer and trimer as well as their model complexes (calculated at theoretical *level I*).

Table S1: DFT computed energies of high spin (HS) and broken symmetry (BS) state, $\langle S^2 \rangle$ values and the computed *J* values for dinuclear complexes 1 and 2 along with their model complexes.

	TOTAL	ENERGY	<s<sup>2> VALUE</s<sup>	S	J values
	HS	BS			
Complex 1	-2499.4324	-2499.43231	24.7644	10.7643	2.142073
Models with one bridge al	bsent				
1a	-2424.4966	-2424.49663	24.7667	10.7668	-0.71274
Model with no bridge					
1b	-2349.4066	-2349.40682	24.7717	10.7772	-4.91349
Complex 2	-3711.6362	-3711.63618	24.7653	10.7653	0.364054
Models with one bridge al	bsent				
Model 2b	-3636.7725	-3636.77262	24.7669	10.7676	-2.29378
Model 2c	-3636.782	-3636.7821	24.7671	10.7677	-1.56869
Model 2a	-3636.7707	-3636.7708	24.7668	10.7676	-2.25839
Models with two bridge a	bsent				
2aa	-3561.7424	-3561.74247	24.7724	10.7739	-1.26664
2bb	-3561.7032	-3561.70318	24.773	10.7737	0.785719
2cc	-3561.7622	-3561.76218	24.7716	10.7729	-0.68394

Table S2: DFT computed energies and J values for Complex 3 and 4.

Complex 3				Complex 4			
Spin Configurations	Energy	J value	$e(cm^{-1})$	Spin Configurations	Energy	J valu	$e(cm^{-1})$
HS	-3128.135079610000			HS	-3926.428739510000		Ì,
		$J_{l} =$	2.16			$J_I =$	0.59
BS 1	-3128.135002600000			BS1	-3926.428720780000		
		$J_2 =$	2.05			$J_2 =$	0.56
BS 2	-3128.135002600000			BS2	-3926.428720720000		
		$J_3 =$	- 0.15			$J_3 =$	-0.12
BS 3	-3128.134925670000			BS3	-3926.428699850000		

Overlap integral analysis: The overlap integral analysis reported for complex **1** and complex **2** as well as for all model complexes, which confirms the antiferromagnetic contribution in particular complexes. The suitability of DFT orbitals for qualitative analysis has been found to be valid at many occasions and had provided many useful insights.¹⁻³ According the Kahn-Brait model,³ the *J* has been related to the overlap between nonorthogonal localized magnetic orbitals. At many occasions empty-magnetic orbitals are shown to be superior to represent Kahn-Brait model and had been successfully employed for qualitative interpretation.² Therefore, we have decided to use these orbitals for our orbital analysis.

Complex1 and their model

Table S3: Overlap integral values are given for complex 1 and their model complexes. The computed orbital numbers are given in the table with alpha for Ni^{II} and beta for Gd^{III} .

Complex 1	J value=	2.142072	Complex 1a	J value=	- 0.71274			4 0 1 0 4 0
Gd	Ni 178	Ni 179	Gd	Ni 172	Ni 173	Complex Ib	J value =	- 4.91349
f orbitals	dz^2	dx^2-y^2	f orbitals	$dx^2 - x^2$	dz^2	Gd	Ni 168	Ni 170
206	-0.002	-0.005	101011015	0.015	0.005	f orbitals	dx^2-y^2	dz^2
209	0.003	0.001	107	-0.015	0.003	179	-0.028	0.009
210	0.000	0.003	188	-0.014	0.009	181	0.019	0.015
210	-0.005	-0.004	189	0.003	-0.001	182	-0.006	-0.060
211	-0.005	-0.004	193	0.005	-0.004	183	-0.002	0.012
212	0.005	0.000	194	0.005	-0.007	184	0.001	0.008
213	-0.003	-0.008	196	0.014	-0.007	186	0.004	0.032
214	-0.003	0.007	197	-0.005	0.002	187	0.007	-0.007

Complex 2 and their model complexes:

Table S4: Overlap integral values are given for complex 2 and their model complexes. The computed orbital numbers are given in the table with alpha for Ni^{II} and beta for Gd^{III}.

Complex 2		Jvalue	=.364						
GD	Ni 253	N	i 254						
f orbitals	dz^2	dz	x^2-y^2						
287	-0.002	-	0.001						
289	0.000		0.002						
291	0.002	-	0.004						
293	-0.012		0.001						
294	0.003	-	0.001						
295	-0.006		0.001						
305	0.002	-	0.022						
Complex	2a J	value =	-2.25839	Complex 2b	J value=	-2.29378	Complex 2c	Ivalue-	-1 56869
Gd		Ni 244	Ni 250	Gd	Ni 244	Ni 246	GD	Ni 244	Ni 247
f orbi	tals	dz²	$dx^2 - y^2$	f orbitals	dz^2	dx^2-y^2	f orbitals	dz^2	$dx^2 - v^2$
	267	0.010	-0.006	266	-0.003	0.000	269	0.008	0.007
	268	-0.025	0.004	269	0.012	0.003	209	-0.015	0.003
	271	0.017	-0.001	270	-0.012	-0.004	272	-0.014	0.001
	273	-0.006	0.010	271	-0.024	-0.004	276	0.004	0.002
	276	0.012	-0.005	276	-0.002	0.006	277	-0.001	0.009
	280	0.007	0.003	279	0.010	-0.012	279	0.001	0.008
	278	-0.001	0.007	280	-0.010	-0.009	281	-0.011	0.002

0.78
N1241 dz ²
-0.001
0.010
-0.019
-0.006
-0.006
0.005
1z -0. -0. -0. -0. -0. -0. -0.

Pictorial Representation of all model complexes of 1

Figure-S1: The structures of the model complexes presented in Table S1.

Correlation developed for Complex 1b having no bridging groups:

For complex 1b we calculated the J value which is antiferromagnetic in nature. Our orbital analysis indicates a direct interaction of dz² orbital of Ni^{II} with the f orbitals of Gd^{III} in the absence of the bridging group (see Figure above). If direct interaction is the sole reason for the antiferromagnetic behaviour, the magnitude of the J should be correlated to the Ni-Gd distance. To probe this further, we have developed such correlation (see Figure S3) in the model 1b. We found that, as the bond distance between the Ni-Gd increases the antiferromagnetic interaction decreases as expected and at larger distances the interaction approaches to zero.

0

(cm_)

-16

3

Figure-S2:- Representation of dz^2 orbital of Ni(II), showing interaction with f orbital of Gd (III). The red and blue colour represents positive and negative electron density. The isodensity surface represented a value of 0.02 e⁻/bohr³.

Figure-S3: This graphical plot represents the variation of J with increase the distance between Ni and Gd.

Bond length

5

6

4

NBO-analysis for structure 1:

Table S5: Electron occupancies of 6s, 4f and the 5d orbitals of Gd^{III} for complex 1 and its model complexes.

	Original structure	Model 1a	Model 1b
бs	0.22	0.21	0.20
4f	7.01	7.01	7.01
5d	0.17	0.22	0.31

Magneto structural correlation for Complex 2

We developed magneto-structural correlation for complex 2 i.e. variation of J with variation of two dihedrals angles. As dihedral angle increases J value becomes antiferromagnetic. The planar framework of Ni-O-Gd-O gives ferromagnetic *J*.

Figure-S4: Magneto-Structural correlation for complex **2** by changing two dihedral angles at a time.

Spin Density Chart for Complex 1 and their model complexes:

Figure-S5: Complex 1 with numbering of atoms for which the spin densities are given in following table.

Table-S6: Spin densities	of core atoms	for complex 1
--------------------------	---------------	---------------

Atom number	atom list	1 HS	1 BS	1a HS	1a BS	1b HS	1b BS
1	Gd	7.0286900000	7.028026	7.036423	7.043296	7.062645	7.090078
2	Ni	1.6635110000	-1.662209	1.646062	-1.6423	1.566535	-1.54692
3	0	0.0519970000	-0.058561	0.048112	-0.05722	-	
4	0	0.0486720000	-0.05611			-	
7	0	-0.0038730000	-0.003972	-0.00742	-0.00839	-0.01459	-0.01473
8	0	-0.0034160000	-0.003443	-0.00529	-0.00503	-0.02016	-0.02486
10	0	-0.0035080000	-0.003609	-0.00381	-0.00532	-0.00753	-0.00795
11	0	-0.0039080000	-0.004007	-0.00526	-0.00533	-0.00813	-0.00848
13	0	-0.0032630000	-0.003366	-0.00472	-0.00526	-0.00692	-0.00772
14	0	-0.0027170000	-0.002798	0.003623	-0.00397	-0.00549	-0.0054
5	0	-0.0017630000	-0.001564	-0.00259	-0.00308	0.001492	-0.00233
6	0	-0.0017720000	-0.001671	0.001451	-0.00163	0.001492	-0.01948
16	0	0.0332660000	-0.033311	0.037461	-0.03742	0.030517	-0.03046
17	0	0.0378610000	-0.037911	0.042212	-0.04221	0.041729	-0.04152
18	Ν	0.0889140000	-0.08869	0.158075	-0.15804	0.159589	-0.15855
19	Ν	0.0843180000	-0.08398	0.074313	-0.07433	0.157216	-0.15618

The spin densities on atoms (which are directly related with metals) are given in table. The numbering for atoms are given in table, are correlated with numbering in crystal structure which shown above.

Spin Density Chart for Complex 2 and their model complexes:

Figure-S6: Complex 2 with numbering of atoms for which the spin densities are given in following table.

Model Complexes with one bridge absent

Model complexes with two bridges absent

2a HS

2aa HS

Table-S7: Spin densities of core atoms for complex 2 along with model complexes

Complex 2

atom number	atom list	2 HS	2 BS		2c BS	2b HS	2b BS	2c HS	2C BS		2aa BS	2bb HS	2bb BS	2cc HS	2cc BS
1	Gd	7.019519	7.022986	7.02089	7.03184	7.019702	7.035076	7.021324	7.033253	7.028186	7.048605	7.030319	7.043766	7.026595	7.046371
2	Ni	1.620215	-1.616379	1.685367	1.68014	1.586132	-1.57971	1.583552	-1.57744	1.540087	-1.52926	1.529388	-1.52048	1.542214	-1.53153
15	0	0.043488	-0.050685	-	-	0.049823	-0.05943	0.058651	-0.06957	-	-	0.056659	-0.07062	-	-
16	0	0.045864	-0.051274	0.061417	- 0.07069	-	-	0.049444	-0.05584	0.057519	-0.0701	-	-	-	-
17	0	0.044387	-0.050036	0.046682	0.05283	0.055138	-0.06447	-	-	-	-	-	-	0.054704	-0.06735
18	0	0.002528	-0.002433	-0.00348	0.00358	-0.00316	-0.00334	-0.00482	-0.00512	-0.00702	-0.0078	-0.00615	-0.00658	-0.00433	-0.0064
19	0	0.002403	-0.002438	-0.00418	0.00446	-0.00316	-0.00333	-0.00349	-0.00384	-0.00623	-0.01001	-0.00479	-0.00592	-0.00552	-0.00771
20	0	0.002403	-0.002493	-0.00361	-0.004	-0.00383	-0.00388	-0.00338	-0.0033	-0.00529	-0.00609	-0.0055	-0.00674	-0.00565	-0.00573
21	0	0.002417	-0.002642	-0.00373	0.00406	-0.00465	-0.00529	-0.0036	-0.00401	-0.00567	-0.00723	-0.00664	-0.00806	-0.00658	-0.0083
22	0	0.001627	-0.00187	-0.00274	0.00289	-0.00203	-0.0025	-0.00262	-0.00311	-0.00398	-0.00458	-0.00329	-0.00413	-0.00331	-0.0037
23	Ν	0.08715	-0.087373	0.071526	0.07132	0.144206	-0.14445	0.096219	-0.09672	0.056404	-0.05708	0.190258	-0.19058	0.141343	-0.14097
24	Ν	0.08881	-0.089096	0.03023	0.03078	0.080525	-0.08052	0.145257	-0.14542	0.193005	-0.19367	0.147043	-0.14668	0.065483	-0.06608
25	N	0.082428	-0.082598	0.067427	0.06778	0.093882	-0.09458	0.071463	-0.07149	0.130785	0.130352	0.051936	-0.05256	0.179094	-0.17993

212

213

214

218

Bond Angle correlation in Complex 1 confirmed by overlap integral analysis:

Complex I at angle 80.15		J value = -0.31
Gd	Ni 176	Ni179
f orbitals	dz2	dx2-y2
204	-0.012	0.005
205	-0.001	0.001
207	-0.008	0.002
208	-0.004	-0.007
209	0.003	0.003
211	-0.001	0.001
212	-0.001	0.005
Complex 1 at angle 119.15	J value	e = 2.58
Gd	Ni 178	Ni179
f orbitals	dz^2	dx^2-y^2
209	0.003	0.001
210	0.000	0.003
211	-0.005	-0.004

0.005

-0.003

-0.003

0.003

Table-S8: Overlap integral analysis for bond angle correlation for complex 1

1 00 17

MAGPACK Simulated Plot: Since the experimental data is not available readily, we have created the experimental data from the spin Hamiltonian parameter ($J_1 = 4.8 \text{ cm}^{-1}$, $J_2 = 0.05 \text{ cm}^{-1}$, $D = 0.03 \text{ cm}^{-1}$ and g = 2.03) reported by the authors for the complex **3**. Since these parameters yield excellent fit to the experimental points, we have simulated the experimental points based on these data (black squares) and the simulated curve using DFT *J* values ($J_1 = 2.16 \text{ cm}^{-1}$, $J_2 = 2.05 \text{ cm}^{-1}$, $J_3 = -0.15 \text{ cm}^{-1}$, $D = 18.0 \text{ cm}^{-1}$ and g = 2.03) as shown below. An excellent fit between two sets is evident.

0.006

-0.008

0.007

0.002

0.01

Figure-S7: Thermal variation of $X_M T$ for complex 3 experimental and DFT calculated curves.

Figure-S8. a) variation spin-densities of Ni^{II} along the twist angle correlation b) dependence of J_3 on Ni_A-Ni_B distance for bond length correlation.

Some Ni-Gd Complexes like complex 1 and 2.

Table S9: Different Ni-Gd complexes along with J value as well as structural parameters, which has been taken as experimental points (red colour) in magneto-structural correlation for Complex 1.

	Bond Length Ni-O-Gd		Bond Angle	Bond length Gd-O		Bond Angle Gd-O-Ni		Dihedral Angle				
IVED A E ⁵	$I_{value} = 10.10$											
IIEKAF	J value=+0.19	2 1 1 3	87 34	Gd-O1	2 459			Ni-O-Gd-O	35.29	Ni-O-Gd-O	45 69	
	Nil-O2	2.115	93.11	Gd-O2	2.457			Ni-O-Gd-O	43 31	Ni-O-Gd-O	34.26	
	Nil-O3	2.075	90.61	Gd-O3	2.371			Ni-O-Gd-O	32.96	Ni-O-Gd-O	32.42	
	Ni2-04	2.081	90.82	Gd-O4	2.363			11 0 04 0	0200	110 0000	02.12	
	Ni2-O5	2.146	87.21	Gd-O5	2,441							
	Ni2-O6	2.068	93.28	Gd-O6	2.288							
IYEREJ ⁵	J value=+0.32											
	Ni1-O1	2.077	91.98	Gd1-O1	2.378			Ni-O-Gd-O	37.96	Ni-O-Gd-O	37.95	
	Ni1-O2	2.073	92.34	Gd1-O2	2.368			Ni-O-Gd-O	36.61	Ni-O-Gd-O	36.61	
	Ni1-O3	2.059	92.3	Gd1-O3	2.382			Ni-O-Gd-O	36.19	Ni-O-Gd-O	36.18	
	Ni2-O1	2.077	91.99	Gd1-O4	2.535	Gd1-O4-GD2	116.61					
	Ni2-O2	2.073	92.36	Gd1-O5	2.562	Gd1-O5-GD2	116.63					
	Ni2-O3	2.059	92.3	Gd2-O1	2.378							
				Gd2-O2	2.369							
				Gd2-O3	2.383							
				Gd2-05	2.534							
UDEZAF ⁶	J value=+0.79		Ni-O-GD									
	Ni1-O2	1.988	106.87	GD1-O2	2.454	GD1-O2-Ni1	108.38	Ni-O-Gd-O	3.69			
	Ni1-O3	2.009	109.39	GD1-O3	2.502	GD1-O3-Ni1	109.32	Ni-O-Gd-O	3.69			
	Ni2-O2	1.989	106.87	GD1-O2	2.454	GD1-O2-Ni2	108.38					
	Ni2-O3	2.01	109.39	GD1-O3	2.501	GD1-O3-Ni2	109.32					
UDUYIB ⁷	J value=+0.56											
	Ni1-O1	2.117	92.25	Gd1-O1	2.33	GD1-01-Ni1	92.25	Ni-O-Gd-O	41.22			
	Ni1-O2	2.208	90.17	Gd1-O2	2.323	GD1-02-Ni1	90.17	Ni-O-Gd-O	38.55			
	Ni1-O3	2.069	94.33	Gd1-O3	2.303	GD1-O3-Ni1	94.33	Ni-O-Gd-O	32.22			
UDEYUY ⁶	J=+0.79 for Ni-Gd											
	Ni1-07	2.03	108.17	Gd1-07	2.511	Gd1-07-Ni1	108.17	Ni-O-Gd-O	2.15			
	Ni1-O2	2.017	108.16	Gd1-O2	2.523	Gd1-O2-Ni1	108.16	Ni-O-Gd-O	1.68			
	Ni2-O6	2.011	109.16	Gd1-O6	2.485	Gd1-O6-Ni2	109.16					
	Ni2-O3	2.018	107.27	Gd1-O3	2.53	Gd1-O3-Ni2	107.27					
LOJMUT ⁸	J value=+0.34											
	Ni1-O1	2.099	91.5	Gd1-O1	2.311		2.311	Ni-O-Gd-O	38.49			
	Ni1-O2	2.081	89.41	Gd1-O2	2.402		2.402	Ni-O-Gd-O	34.59			
	Ni1-O3	2.065	90.86	Gd1-O3	2.364		2.364	Ni-O-Gd-O	38.63			
XOFSER ⁹	Jvalue=+0.54											
	Ni1-O1	2.067	94.71	Gd1-O1	2.2426			Ni-O-Gd-O	36.32	Ni-O-Gd-O	36.32	
	Ni1-O3	2.042	95.55	Gd1-O3	2.242			Ni-O-Gd-O	35.86	Ni-O-Gd-O	35.85	
	Ni1-O5	2.067	94.86	Gd1-O5	2.2422			Ni-O-Gd-O	36.73	Ni-O-Gd-O	36.75	
	Ni1-O1'	2.067	94.71	Gd1-O1'	2.2426							

Ni1-O3'	2.042	95.55	Gd1-O3'	2.242
Ni1-O5'	2.067	94.84	Gd1-O5'	2.2422

References:

- E. Ruiz, S. Alvarez, A. Rodríguez-Fortea, P. Alemany, Y. Pouillon, C. Massobrio, In Magnetism: Molecules to Materials (Eds. J.S. Miller, M. Drillon), Wiley-VCH, Weinheim, Vol. 2, p 227, 2001.
- 2. C. Desplanches, E. Ruiz, A. Rodríguez-Fortea, S. Alvarez, J. Am. Chem. Soc. 2002, 124, 5197.
- 3. O. Kahn, B.J. Briat, Chem. Soc., Faraday Trans. 2 1976, 72, 268-281.
- 4. C. Blanchet-Boiteux, J. M. Mouesca, Theor. Chem. Acc. 2000, 104, 257.
- 5. T. Yamaguchi, Y. Sunatsuki, M. Kojima, H. Akashi, M. Tsuchimoto, N. Re, S. Osa, N. Matsumoto, *Chem. Comm.*, 2004, 1048.
- 6. T. Shiga, N. Ito, A. Hidaka, H. Okawa, S. Kitagawa, M. Ohba, *Inorg. Chem.*, 2007, **46**, 3492.
- 7. Q. -Y. Chen, Q. -H. Luo, L. -M. Zheng, Z. -L. Wang, J. -T. Chen, *Inorg. Chem.*, 2002, **41**, 605.
- 8. T. Yamaguchi, Y. Sunatsuki, H. Ishida, M. Kojima, H. Akashi, N. Re, N. Matsumoto, A. Pochaba, J. Mrozinski, *Inorg. Chem.*, 2008, **47**, 5736.
- V. Chandrasekhar, B. M. Pandian, R. Boomishankar, A. Steiner, J. J. Vittal, A. Houri, R. Clerac, *Inorg. Chem.*, 2008, 47, 4918.