Supporting Information for

17 e⁻ Rhenium Dicarbonyl CO-Releasing Molecules on a Cobalamin Scaffold for Biological Application

Fabio Zobi*, Olivier Blacque, Robert A. Jacobs, Marcus C. Schaub and Anna Yu. Bogdanova

Content.

Figure S1. HPLC trace of B₁₂-ReCORM-2.

Figure S2. MS spectrum of B₁₂-ReCORM-2.

Figure S3. IR spectrum of B₁₂-ReCORM-2.

Figure S4. IR spectrum of B_{12} -ReCORM-4 (left) and of the product collected after prolonged reaction time (right).

Figure S5. Theoretical UV-Vis absorption spectra (in H₂O) of the *cis-trans*- $[\text{Re}^{II}(\text{CO})_2\text{Br}_2(\text{H}_2\text{O})(\text{N}\equiv\text{C}-\text{H})]$ and *cis*- $[\text{Re}^{II}(\text{CO})_2(\text{H}_2\text{O})_3(\text{N}\equiv\text{C}-\text{H})]^{2+}$ species.

Figure S6. HPLC trace recorded ca. 30 min after dissolution of B_{12} -ReCORM-2 in water. Species number assignments are as shown in Scheme 2. The identity of the species was derived from HPLC-MS analysis.

Figure S7. HPLC trace of B₁₂-ReCORM-4.

Figure S8. MS spectrum of B₁₂-ReCORM-4.

Figure S9. Left: liquid IR spectrum of ReCORM-1 in phosphate buffer (0.1M, pH = 7.4) 2 and 30 min after dissolution. Right: MS spectra (negative mode) of a H₂O:CH₃OH (3:1) solution of ReCORM-1 after dissolution (top) and after 12h (bottom) (S_a = H₂O, S_b = CH₃OH). Methanol is present as a required volatile solvent for the ionization of the sample.

Figure S10. Titration curve of an aqueous solution of ReCORM-1 (0.1M KNO₃, 25 °C, completed within 15 min).

Figure S11. UV-Vis absorption spectrum of ReCORM-1 soon after dissolution in water.

Figure S12. Theoretical UV-Vis absorption spectra (in H₂O) of the progressive aquation of ReCORM-1. Bottom-left spectrum shows a superimposition of the experimental spectrum of ReCORM-1 soon after dissolution in water and the theoretical spectrum of cis-[Re^{II}(CO)₂Br(H₂O)₃]⁺ (1a in Scheme 3).

Figure S13. Effect of CORMs' supplementation on the oxygen levels in the cell-free culture medum. Top: original recording of the changes in O_2 concentrations (in blue) and oxygen flux (in red) over time of experiment. Addition of ReCORM-1 at concentrations 7.5-75 μ M had no effect on the basal

 O_2 flux (M(0)) during the time on 30 min, but resulted in acute dose-dependent changes in O_2 levels (blue line) and in O_2 flux levels (M7.5)-M(75). New steady state O_2 levels were reached with 1-2 min after ReCORM-1 administration. Bottom: Acute changes in O_2 flux as a function of ReCORM-1 concentration.

Figure S14. Oxygen consumption by NRCs exposed to various concentrations of CORMs concentration. Changes in oxygen concentrations in the cell culture medium were measured during the 40 min of incubation of NRCs in Oxygraph-2k. Oxygen consumption by cells was assessed as "basal" steady state O_2 flux recorded ~4-5 min after the CORM administration (see the example in Fig S14A) which was sensitive to the inhibitors of mitochondrial complexes I-III (rotenone, antimycin A and KCN). Responses of the cells to addition of DMSO alone (in control) or the aliquots of 100 mM stock solutions of CORMs in DMSO were recorded as a function of CORMs concentration.

Figure S15. ¹H-NMR spectrum (500 MHz, D₂O, 300 K) of **3**.

 Table S1. Crystallographic data for compounds 3 and 5.

Table S2. Cartesian coordinates of DFT optimized molecules.

Figure S16. Two-layer ONIOM(B3LYP/LanL2DZ:UFF) optimized B₁₂-ReCORM-2 and B₁₂-ReCORM-4. The different layers are represented with balls and sticks (high) and wireframe (low).

Figure S1. HPLC trace of B₁₂-ReCORM-2.

Figure S2. MS spectrum of B₁₂-ReCORM-2.

Figure S3. IR spectrum of B₁₂-ReCORM-2.

Figure S4. IR spectrum of B₁₂-ReCORM-4 (left) and of the product collected after prolonged reaction time (right).

Figure S5. Theoretical UV-Vis absorption spectra (in H₂O) of the *cis-trans*- $[Re^{II}(CO)_2Br_2(H_2O)(N\equiv C-H)]$ and *cis*- $[Re^{II}(CO)_2(H_2O)_3(N\equiv C-H)]^{2+}$ species.

Figure S6. HPLC trace recorded ca. 30 min after dissolution of B_{12} -ReCORM-2 in water. Species number assignments are as shown in Scheme 2. The identity of the species was derived from HPLC-MS analysis.

Figure S7. HPLC trace of B₁₂-ReCORM-4.

Figure S8. MS spectrum of B₁₂-ReCORM-4.

Figure S9. Left: liquid IR spectrum of ReCORM-1 in phosphate buffer (0.1M, pH = 7.4) 2 and 30 min after dissolution. Right: MS spectra (negative mode) of a H₂O:CH₃OH (3:1) solution of ReCORM-1 after dissolution (top) and after 12h (bottom) ($S_a = H_2O$, $S_b = CH_3OH$). Methanol is present as a required volatile solvent for the ionization of the sample.

Figure S10. Titration curve of an aqueous solution of ReCORM-1 (0.1M KNO₃, 25 °C, completed within 15 min).

Figure S11. UV-Vis absorption spectrum of ReCORM-1 soon after dissolution in water.

Figure S12. Calculated UV-Vis absorption spectra (in H₂O) of the progressive aquation of ReCORM-1. Bottom-left spectrum shows a superimposition of the experimental spectrum of ReCORM-1 soon after dissolution in water and the theoretical spectrum of cis-[Re^{II}(CO)₂Br(H₂O)₃]⁺ (1a in Scheme 3).

Figure S13. Effect of CORMs' supplementation on the oxygen levels in the cell-free culture medum. Top: original recording of the changes in O_2 concentrations (in blue) and oxygen flux (in red) over time of experiment. Addition of ReCORM-1 at concentrations 7.5-75 μ M had no effect on the basal O_2 flux (M(0)) during the time on 30 min, but resulted in acute dose-dependent changes in O_2 levels (blue line) and in O_2 flux levels (M7.5)-M(75). New steady state O_2 levels were reached with 1-2 min after ReCORM-1 administration. Bottom: Acute changes in O_2 flux as a function of ReCORM-1 concentration.

Figure S14. Oxygen consumption by NRCs exposed to various concentrations of CORMs concentration. Changes in oxygen concentrations in the cell culture medium were measured during the 40 min of incubation of NRCs in Oxygraph-2k. Oxygen consumption by cells was assessed as "basal" steady state O_2 flux recorded ~4-5 min after the CORM administration (see the example in Fig S14A) which was sensitive to the inhibitors of mitochondrial complexes I-III (rotenone, antimycin A and KCN). Responses of the cells to addition of DMSO alone (in control) or the aliquots of 100 mM stock solutions of CORMs in DMSO were recorded as a function of CORMs concentration.

Figure S15. ¹H-NMR spectrum (500 MHz, D₂O, 300 K) of **3**.

	3	5
empirical formula	$\frac{2(C_{70}H_{94}CoN_{16}O_{15}P)}{\cdot 5(C_{3}H_{6}O)\cdot 16(H_{2}O)}$	$\frac{0.53(C_{63}H_{86}CoN_{14}O_{14}P)}{\cdot 0.47(C_{66}H_{88}CoBrN_{14}O_{18}PRe)}$ $\cdot C_{3}H_{6}O \cdot 6.53(H_{2}O)$
formula weight (g·mol ⁻¹)	3525.43	1700.37
temperature (K)	183(2)	183(2)
wavelength (Å)	0.71073	0.71073
crystal system, space group	orthorhombic, $P 2_1 2_1 2_1$	orthorhombic, $P 2_1 2_1 2_1$
<i>a</i> (Å)	15.5066(4)	15.8806(2)
<i>b</i> (Å)	22.9558(7)	21.8255(3)
<i>c</i> (Å)	25.1741(7)	26.2738(4)
α (deg)	90	90
β (deg)	90	90
$\gamma(\text{deg})$	90	90
volume (Å ³)	8961.1(4)	9106.6(2)
Z, density (calcd) (Mg \cdot m ⁻³)	2, 1.307	4, 1.240
abs coefficient (mm ⁻¹)	0.291	1.096
<i>F</i> (000)	3728	3559.4
crystal size (mm ³)	0.49 x 0.07 x 0.03	0.48 x 0.20 x 0.06
θ range (deg)	2.58 to 25.68	2.57 to 27.10
reflections collected	71958	79318
reflections unique	$16995 / R_{\rm int} = 0.1164$	$20093 / R_{\rm int} = 0.0603$
completeness to θ (%)	99.8	99.9
absorption correction	analytical	analytical
max/min transmission	0.988 and 0.895	0.884 and 0.530
data / restraints / parameters	8376 / 117 / 1123	13534 / 113 / 1076
goodness-of-fit on F^2	0.898	1.063
final R_1 and wR_2 indices $[I > 2\sigma(I)]$	0.0722, 0.1465	0.0656, 0.1816
R_1 and wR_2 indices (all data)	0.1487, 0.1655	0.0932, 0.1884
absolute structure parameter	0.03(2)	0.039(7)
largest diff. peak and hole $(e \cdot \text{\AA}^{-3})$	0.786, -0.495	1.140, -0.560

Table S1. Crystallographic data for compounds 3 and 5.

The unweighted R-factor is $R_1 = \sum (Fo - Fc) / \sum Fo$; $I > 2 \sigma(I)$ and the weighted R-factor is $wR_2 = \{\sum w(Fo^2 - Fc^2)^2 / \sum w(Fo^2)^2\}^{1/2}$

 Table S2. Cartesian coordinates of DFT optimized molecules.

Cartesian coordinates of $[Re^{II}(CO)_2(H_2O)_4]^{2+}$

Re	0.10811700	-0.00458200	0.00318700
С	-1.28960900	1.32298300	-0.01831200
С	-1.35378300	-1.29154100	0.01441500
Н	2.71849900	-1.15904800	0.04172600
Н	-0.46665400	0.29830900	2.70185500
Н	2.13273400	1.82510000	-0.86668000
0	0.26437300	0.03956400	2.10138900
0	1.82019300	1.40141400	-0.03930100
0	1.77975400	-1.44079900	0.02840900
0	-2.23991300	-2.05247300	0.01205800
0	-2.13242700	2.13597000	-0.02832100
Н	0.99150800	-0.50374900	-2.57354300
0	0.26677000	-0.04567900	-2.09700000
Н	1.69838900	-2.41689400	0.04329500
Н	1.00792800	-0.36605100	2.59610200
Н	2.05563100	1.96123200	0.73101600
Н	-0.45647100	0.21213600	-2.70726000

Cartesian coordinates of [Re^{II}(CO)₂Br(H₂O)₃]⁺

Re	0.37993100	-0.11548600	0.01081900
С	0.58895300	1.28821100	1.29377800
С	0.71060600	1.26365500	-1.26868900
Н	-0.19089800	-2.63088000	-1.04362200
Н	0.51416800	-2.16451500	2.05808800
0	-0.08857100	-1.82424100	1.36734500
0	0.25492400	-1.82793100	-1.38356400
0	0.90490700	2.11851400	-2.05677900
0	0.71761600	2.15430800	2.08219100
Н	2.64889200	-1.67169600	-0.32096700
0	2.40775900	-0.83906000	0.13261200
Н	0.09642800	-1.70752100	-2.34088400
Н	-1.02781700	-1.85347900	1.65320400
Н	3.18151800	-0.27432900	0.32076000
Br	-2.14535800	0.15428400	-0.06922900

Cartesian coordinates of [Re^{II}(CO)₂Br₂(H₂O)₂]

Re	0.00015000	0.04469300	-0.00091300
С	-0.00044200	1.45039100	1.27641700
С	0.00024500	1.45524700	-1.27300800
Br	-2.57211600	-0.34575000	0.00033100
Br	2.57225000	-0.34565100	0.00057700
0	0.00029800	2.34165600	-2.06078900
0	-0.00129800	2.33294700	2.06860200
0	0.00005100	-1.63422000	1.42850800
Н	-0.82543800	-1.96887700	1.82501700
Н	0.82580900	-1.96930000	1.82416200
Н	0.82464200	-1.97302400	-1.82282400
0	-0.00066000	-1.62801500	-1.43515100
Н	-0.82691000	-1.97453300	-1.81952000

Cartesian coordinates of [Re^{II}(CO)₂Br₃(H₂O)]⁻

Re	-0.01194800	-0.24451600	0.05232300
С	0.00796500	-2.15145400	-0.14846600
С	-0.08500700	-0.55018500	1.90312000
Br	-2.59872300	-0.33432200	-0.38651700
Br	-0.03358600	2.44169900	0.21950200
Br	2.63403200	-0.31162700	-0.28115700
0	-0.12620300	-0.73516600	3.08298300
0	0.01825400	-3.33742200	-0.23730900
0	0.15587000	0.33603800	-2.13085500
Н	-0.20907300	1.25002600	-2.16921600
Н	1.12374500	0.33964500	-2.31544600

Cartesian coordinates of $[Re^{II}(CO)_2Br_4]^{2-}$

Re	0.0000000	0.0000000	0.33761800
С	0.0000000	1.28941400	1.72049300
С	0.0000000	-1.28941400	1.72049300
Br	2.69052600	0.0000000	0.31932600
Br	0.0000000	-1.97098400	-1.57803500
Br	0.0000000	1.97098400	-1.57803500
Br	-2.69052600	0.0000000	0.31932600
0	0.0000000	-2.06884400	2.63389600
0	0.0000000	2.06884400	2.63389600

Cartesian coordinates of B12-ReCORM-4

Н	-1.29382800	-2.22505300	-3.78675700
С	-0.14250300	-0.39865600	-4.23516400
С	-1.21009800	-1.20818500	-3.39604200
Н	1.06350200	2.14504000	-4.38029700
С	-0.55593800	-1.18159500	-1.96979400
С	0.44408200	0.50902100	-3.15064300
С	-0.88441000	-2.02676500	-0.90526900
С	1.11395200	1.71375600	-3.38784800
Н	-2.08214300	-4.16381800	1.24962400
N	0.31325900	-0.08184300	-1.92192000
0	-4.68513900	-3.44660700	1.29109700
Н	2.95926300	3.57150900	-4.02158100
С	2.68206400	-0.66965000	-0.78259500
С	-0.25637500	-1.90562500	0.41654100
С	-1.72305100	-3.43685600	2.00223100
С	1.98462300	2.35652000	-2.51091000
С	-0.30602400	-2.92640900	1.62658800
Н	-6.85883200	0.88284000	-1.19665100
Н	-1.67047300	-4.03906200	2.92938100
С	2.82986500	3.54595500	-2.93507000
Н	-6.31727000	-4.36932900	3.05434100
С	-4.15833000	-2.93763400	2.31852600
Ν	0.57102800	-0.90737000	0.70808400

Со	1.31955900	0.53061200	-0.35233500
H	-2.77417300	-1.60453500	1.38219600
H	-8.77227100	-3.84631600	2.75372800
N	2.33538400	1.92973900	-1.26839800
С	4.18316600	3.21127400	-2.14500500
H	2.21881600	-1.64739900	1.74839700
С	-2.78314600	-2.33608500	2.21503500
H	-4.24265700	-0.34173100	-0.12429300
С	-6.10293300	0.06646600	-1.13538600
H	-1.81029400	0.50351200	-0.43969700
H	-5.69163600	-0.13113100	-2.14822200
С	-6.19540700	-3.43547500	3.64703100
С	3.59790600	2.43861200	-0.90238900
С	0.33875500	-2.05343400	2.80164300
С	1.30415700	-1.10853600	2.02012400
0	-4.25510800	1.58396200	-0.82081100
С	-4.95158800	0.51140600	-0.23200600
С	-1.49090400	1.48490600	-0.12973800
С	-8.63925500	-2.92553200	3.36126000
H	-6.36806500	-3.69787200	4.71430300
H	-2.56640100	-1.77437800	3.14518900
N	-0.21860800	1.85177900	0.01310300
H	-9.37465600	-2.16987100	3.01226200
H	-0.43544900	-1.42982500	3.26019400
N	2.21598000	0.99095400	1.28219600
H	-8.84901200	-3.16101600	4.42697400
С	4.13843100	2.23018800	0.36209300
N	-2.35951500	2.50465100	0.20406400
С	1.70797200	0.33018500	2.54911000
С	-3.79889900	2.41202600	0.23073900
С	3.34510900	1.65585400	1.43406100
С	-5.44045200	0.96384300	1.13787700
С	-0.23767900	3.19093900	0.47633100
H	-4.23130000	3.42308100	0.06442900
0	-5.57539100	-0.09410100	1.94705000
0	-7.07957700	-1.28936700	3.96440300
С	2.98965000	0.52811700	3.56536200
0	-8.18124600	0.32964900	2.20635600
С	-1.58889300	3.61197800	0.61003500
H	1.83522400	3.76875000	0.72214700
H	-6.36379600	1.57953500	0.99441300
С	-4.31861700	1.87429300	1.57127000
H	4.81152200	1.71008600	3.04146000
С	0.80207100	4.07532500	0.81632100
C	3.72968700	L./9317000	2.92074400
Р С	-6.90976800	0.11239200	2.99916200
C	-1.92150400	4.89519400	1.07640500
H	-4.69339900	2.69609700	2.21955200
н а	-2.95435800	5.2152/900	1.18303/00
	0.48980600	5.36528200	1.26936500
Н	∠.58866000	2.89812200	⊥.36686300

С	-0.88003600	5,77816000	1,40314200
0	-6 67131800	1 30280500	3 90040900
H	1 51603100	7 27574200	1 07720300
C	1 61283400	6 32537100	1 61894000
н	-2 29288800	7 32371600	1 97149900
C	-1 21086200	7 17636700	1 88942900
ч	1 6200/900	6 56887700	2 69091100
ц	-0.82079300	7 9/113100	1 20336700
ц	-0 76839500	7.37761700	2 97/33300
II N	_/ 93100100	-2 92151200	2.07455500
IN TT	4.03199100	2 45096100	1 22101200
n C	-4.39902300 -7.21915700	-2.3910100	3 10003000
	7.05502200	2.30144700	2 10200200
	-7.03393300	-2.22576900	2.10209200
0	-3.32923300	1.13730300	2.23009200
	0.30020000	-4.1314/300	1.20000200
п 11	0.39496700 0.21570000	-4.07/17400	2.00134900
H	0.21570800	-4.65624400	0.35929200
H	1.62169800	-3.8141/800	1.05194900
	1.03000100	-2.82361300	3.93526300
H	1.49005700	-2.10210400	4.62895400
H	1.84/18900	-3.46229200	3.54111900
0	-0.85510000	-3.055/0500	5.38/30400
	0.07660900	-3.632/8500	4./64/2/00
N	0.25/38100	-5.04096900	4.91548500
H	1.053/3200	-5.53301900	4.45345200
H	-0.403/8/00	-5.59510000	5.5035/100
C	0.43295000	1.05165200	3.0289/900
H	-0.42669000	0.84942600	2.36239600
H	0.12844500	0.69939800	4.03503500
H	0.56435600	2.14637300	3.05899000
C	2.58//3/00	0./3106800	5.036/2400
H	3.47678300	0.87640800	5.68027900
H	1.94414900	1.62133800	5.17622900
H	2.03459400	-0.14289900	5.42483200
С	3.96038300	-0.68439600	3.45304500
H	3.45363600	-1.62083500	3.73654500
H	4.27598600	-0.80959900	2.39379400
C	5.20719400	-0.58500200	4.29624600
0	6.29063500	-0.21956600	3.76629500
H	6.10737600	-1.12250200	6.17625400
H	4.36160300	-1.53343000	6.04057300
N	5.22498000	-1.12529400	5.61822600
С	3.35707300	3.21157300	3.40788600
H	3.53675500	3.93323000	2.58066100
H	2.28544100	3.28869800	3.65716100
С	4.20549000	3.69058600	4.59591600
Н	4.03706200	3.05950100	5.48881700
H	5.28353200	3.62819900	4.32913800
С	3.86434400	5.10879800	4.94863700
0	4.72352800	6.01731100	4.79458600
H	2.33899200	6.42487000	5.70625900

н	1 86601600	4 69042000	5 64516400
N	2 57728700	5 /3531300	5 47371400
C	5 60473300	2 11793100	0 6/333200
U U	6 21556000	2 18012000	_0 27003700
п	5.21536000 E 74E76000	2.40942900	1 22526000
H	5./45/6000	3.3/610300	1.23536000
H ~	6.02181400	1.58234000	1.19824600
C	4.9/695900	4.4/155100	-1./6/41900
H	6.01798200	4.25220900	-1.46792500
H	5.04867100	5.15431500	-2.63975700
H	4.48355900	5.01386200	-0.93298600
С	5.05361300	2.23141800	-2.97145100
H	4.46984300	1.30967800	-3.19166600
Н	5.93389900	1.89305000	-2.38942100
С	5.54006700	2.80773600	-4.27473400
Н	7.09668700	3.93807100	-5.23808900
Н	7.30886600	3.74296000	-3.46444800
N	6.74303300	3.57524600	-4.32521400
0	4.96277300	2.49178500	-5.34940600
С	2.16424200	4.87414700	-2.52300600
Н	2.08261800	4.93279600	-1.41909800
H	2.80690500	5.71522400	-2.85998700
C	0.77133600	5.06759900	-3.14200200
H	0.84169300	5.02697300	-4.25027700
н	0 09346200	4 25476000	-2 80647900
C	0 18806800	6 39045600	-2 73729900
е н	-1 41847000	7 37228100	-1 69448600
0	0 75964300	7 45921400	-3 08219200
с ч	-1 54456200	5 57998/00	-1 73821/00
N	-1 02685400	6 45061000	-1 98980700
C	0 96742000	-1 35264500	-4 70563600
с u	0.56776100	-2 07875500	-5 44607100
п	1 70627100	-2.07075500	-5.44007100
H II	1.79627100	-0.76476100	-3.101/0900
H C	1.39432500	-1.928/3900	-3.85564800
	-0.67786600	0.35223200	-5.45/69300
H	-1.13861400	-0.35911900	-6.1/324400
H 	-1.41645/00	1.12810800	-5.1/008200
H ~	0.14524100	0.8566/500	-6.00632600
C	-1.88925000	-3.13520100	-1.14288200
H	-1.45588600	-4.12312200	-0.91370500
H	-2.80020500	-2.95188400	-0.54482900
H	-2.24062000	-3.22643400	-2.17973200
C	-2.61923300	-0.57313300	-3.29354100
H	-3.09318200	-0.86091600	-2.33135100
H	-2.53619600	0.53371500	-3.25404800
С	-3.59227200	-0.97423700	-4.41802500
Н	-4.53885700	-0.40769500	-4.29174900
Н	-3.19125900	-0.68891600	-5.40751300
С	-3.91679600	-2.44086700	-4.40652200
0	-3.56437900	-3.16511500	-5.37529500
Н	-4.90969200	-4.02889500	-3.34669600
N	-4.67641500	-3.01134200	-3.34044800

Н	-4.98012000	-2.43174200	-2.52836600
N	3.52996100	-1.46858900	-0.95355100
Re	4.96333400	-2.99897200	-0.98952700
Br	3.10026800	-4.48997000	-2.24355200
Br	6.82980100	-1.07113300	-0.64476800
С	4.56070600	-3.40456200	0.77710900
0	4.24207000	-3.61740400	1.92720500
С	6.25434400	-4.39514200	-1.00577900
0	7.06544200	-5.27649900	-1.00909300
Н	6.22391500	-1.97398000	-3.22304500
Н	5.10048300	-3.06345200	-3.76987200
0	5.33323200	-2.36887700	-3.12164900
0	-6.68150700	-1.12979700	-0.59789100
С	-7.71679400	-1.61912600	-1.16182500
0	-8.22779600	-2.65208400	-0.65329900
N	-8.33427700	-1.03295600	-2.32911400
С	-9.73302900	-1.27573500	-2.67852800
С	-10.51150700	0.00539100	-2.56285500
С	-10.64591700	0.63464700	-1.31612300
С	-11.10980500	0.58756000	-3.69018700
С	-11.36723800	1.82692200	-1.22123300
Н	-10.19467800	0.20700100	-0.42896000
С	-11.82330600	1.78076000	-3.55045300
Н	-11.02393000	0.12667300	-4.66628500
N	-11.93567000	2.36998300	-2.33035300
Н	-11.47508100	2.32081200	-0.26480300
Н	-12.28762900	2.23901900	-4.41342300
Н	-10.19373500	-2.03337400	-2.00929100
Н	-9.77767500	-1.67920000	-3.71315700
Н	-7.79942500	-0.40269300	-2.96667900

Cartesian coordinates of B12-ReCORM-2

Н	-1.26607600	-2.17603600	-4.37477500
С	-0.00239700	-0.38309700	-4.55806100
С	-1.23071000	-1.17032600	-3.95006400
Н	1.31755100	2.09809800	-4.43439700
С	-0.86482100	-1.17663000	-2.42475100
С	0.39252700	0.49436700	-3.36608000
С	-1.42826000	-2.01310900	-1.45536400
С	1.14109900	1.67237900	-3.45404600
Н	-3.16145300	-4.06857100	0.39294500
Ν	0.00207900	-0.09895100	-2.19466900
0	-5.69517000	-3.26403500	-0.21100600
Н	3.17301400	3.43163400	-3.67745800
С	2.03728000	-0.73321800	-0.53297800
С	-1.12056000	-1.87935400	-0.02632700
С	-2.97226300	-3.32472800	1.18994400
С	1.83142100	2.28787600	-2.41175600
С	-1.49038400	-2.86407500	1.15783000
Н	-7.21470300	1.39637600	-3.06625600

H	-3.16677400	-3.89391400	2.11907700
С	2.80511900	3.43147300	-2.64664000
H	-7.65747500	-4.18562300	1.19805400
С	-5.39475800	-2.75632000	0.90431700
N	-0.36219100	-0.89019600	0.43543400
Со	0.64573600	0.50755800	-0.44537900
Н	-3.78911200	-1.49691400	0.26957500
Н	-9.91766300	-3.70868100	0.22745200
N	1.88116400	1.86546200	-1.12113600
С	3.93274900	3.05122800	-1.57379800
Н	0.96776400	-1.64545100	1.85171200
С	-4.01555900	-2.19082600	1.10437500
Н	-5.12489000	-0.29517800	-1.53504200
С	-6.65570300	0.45833400	-2.86200800
H	-2.39032400	0.52509100	-1.21156900
H	-6.11746300	0.16780700	-3.78765300
C.	-7.67146300	-3.23204900	1.77112900
C	3 05054300	2 33168800	-0 48536700
C	-1 11983400	-1 97334900	2 43476900
C	0 03274700	-1 07523800	1 88771600
0	-4 68197500	1 61655200	-2 12230100
C	-5 64892200	0 66870100	-1 72803300
C	-2 12336800	1 51104800	-0 86848100
C	-9 97638100	-2 80068700	0.86510900
0	-7 55631200	-0.55152100	-2 52733000
о ч	-8 07600900	-3 16218100	2 78123300
и и	-1 00651700	-1 59313500	2 0372/300
N	-0 905/9200	1 86405200	-0 16172700
L L	-10 62816100	-2 058/3700	0.35682400
и П	-1 962/9500	-1 31913000	2 68040500
11 NI	1 15271100	0.08156600	1 34465200
IN LI	-10 /3659700	-3 06007400	1 84016600
п С	2 20062000	-3.00997400	1.04010000
C NI	2 02200000	2.13137000	0.07097100
N	-3.02300000	2.33133900	-0.73070300
	0.34510700	0.36393200	2.4/155100
	-4.43925100	2.40954400	-1.02100000
	2.23906400	1 15020000	1.74143300
	-6.31394100	1.13939000	-0.44/00/00
	-0.99901600	3.21411800	-0.04342900
H Q	-4.81690200	3.4/913600	-1.29599000
0	-6./19/8000	0.09508000	0.33338100
0	-8.70298000	-1.06324500	1.84083200
C	1.36201200	0.55890100	3.75452400
0 ~	-8.54/44600	1.512/2500	1.55240100
C	-2.33869900	3.65//8400	-0.215/4200
H 	0.97948800	3./5862400	0.64588200
H	-7.18038300	1.82004600	-0.68897200
C	-5.22182000	1.97065800	0.19447000
H	3.29348400	1.67876300	3.64468400
С	-0.04088200	4.08791000	0.50106200
С	2.27253000	1.78506500	3.27279400

P	-7.69726100	0.26932900	1.68387800
С	-2.73858800	4.95644200	0.14268700
Н	-5.63511800	2.81468800	0.78848000
Н	-3.76299700	5.29557300	0.01528000
С	-0.41837000	5.39203200	0.85231300
H	1.61371600	5.88231600	1.42488500
C	-1 77575300	5 82927300	0 67442000
0	-6 83088400	0 38841300	2 91641500
с н	0 68314100	7 26959500	0 84075900
C	0 61973300	6 3/089600	1 /2390900
ч	-3 24645100	7 /1019700	0 88776700
C	-2 17719800	7.24210400	1 05388/00
U U	0 38206600	6 62902500	2 45766000
п 11	1 62611000	0.02902300	2.45700900
	1 96407000	7.90749200	0.40374300 2 11057400
П N	-1.90407000	7.45272200	2.1103/400
	-0.30763700	-2.71961200	1.91110500
H	-6.04889200	-2.28192500	2.82427400
C	-8.58385000	-2.20/3/100	1.0/43/400
H	-8.1/612200	-1.96515500	0.06829800
0	-4.42656900	1.16551100	1.02034500
C	-0.58127700	-4.10203100	1.04684700
H	-0.79000100	-4.82201000	1.86388800
H	-0.73187000	-4.64602100	0.09736300
H	0.48946800	-3.81788100	1.09069500
С	-0.74349800	-2.72618800	3.71829100
H	-0.44321100	-1.99493200	4.48587200
H	0.12654200	-3.39316900	3.54680700
0	-2.92898700	-2.87786800	4.67577900
С	-1.89023000	-3.49145400	4.31082600
N	-1.78822000	-4.89789300	4.53443900
H	-0.91650000	-5.41863100	4.29208600
H	-2.58602500	-5.42141100	4.95805900
С	-0.98475400	1.12882400	2.63048500
H	-1.67386000	0.92854900	1.78901000
Н	-1.52230300	0.80893200	3.54574200
Н	-0.83290900	2.22066000	2.66883600
С	0.63670800	0.81485900	5.08728900
Н	1.35668200	0.95621000	5.91637700
Н	0.00666600	1.72491900	5.05357300
Н	-0.01791500	-0.03375300	5.35573400
С	2.29096600	-0.68208300	3.89811800
Н	1.69991300	-1.59509000	4.07654500
Н	2.83979000	-0.84587400	2.94468000
С	3.31048800	-0.59213300	5.00621400
0	4.49848100	-0.27006100	4.73568500
Н	3.73155000	-1.09908200	7.05545300
Н	2.05273700	-1.46773600	6.52566500
N	3.00339100	-1.09493500	6.30726600
С	1.84104500	3.22614200	3.62571900
Н	2.23115500	3.91817700	2.84683300
Н	0.74370600	3,33693500	3.61526400
			2.32020100

C	2 40349800	3 71935900	4 96773400
с ч	2 01554000	3 11695200	5 81060400
п ц	3 51188400	3 62628600	1 96020300
C C	2 02969400	5.02020000	5 20020200
	2.02000400	5.13373400	5.20030300
0	2.92455100	6.03908/00	5.22986600
H	0.405/5100	6.52237300	5.5548/100
H	-0.08/1/500	4./9/43400	5.42315200
N	0.66442200	5.52197500	5.40532900
С	4.65368900	2.29469400	1.47413300
H	5.45598100	2.27239300	0.72169400
H	4.70443700	3.23850900	2.05600700
Н	4.88873300	1.43428400	2.13418000
С	4.68561500	4.28034900	-1.04189000
Н	5.62141600	4.01748100	-0.51548700
Н	4.98324000	4.94050500	-1.88327200
Н	4.04755000	4.86281600	-0.34374000
С	4,91475500	2.01528600	-2.17627500
H	4.35033700	1,11382600	-2.50449800
н	5 63094900	1 65509900	-1 41085700
C	5 69867700	2 53756900	-3 35103300
с ц	7 47498500	2.55750500	-3 96979200
и и	7 28582100	3 12718000	-2 18955200
П N	6 01502000	2 25702100	-2.10900200
	5 25712600	2.21102100	-5.15024500
0	2 12057200	2.21492400	-4.52052500
	2.12957200	4.79564700	-2.40220300
H II	1.80867300	4.0//02000 E.COOC/700	-1.34422300
H Q	2.87038100	5.60064700	-2.59430100
C	0.9191/800	5.040/6200	-3.31628000
H	1.23159900	4.9/966500	-4.38092600
H ~	0.14662800	4.26414800	-3.13539100
C	0.32260400	6.39410600	-3.05866100
H	-1.42935400	7.46162600	-2.40783900
0	1.00576000	7.43120500	-3.27221600
H	-1.62429700	5.67592400	-2.46633500
N	-1.02453100	6.51917300	-2.60261400
С	1.14976900	-1.36375300	-4.82835700
H	0.87778200	-2.06771300	-5.64426100
Н	2.06878800	-0.81498800	-5.12904200
Н	1.39206100	-1.96321900	-3.92351300
С	-0.27880900	0.39814700	-5.84662300
Н	-0.62400700	-0.28873500	-6.64590900
Н	-1.03135500	1.19727900	-5.68924200
Н	0.64727800	0.87860000	-6.22668100
С	-2.36036900	-3.11916300	-1.90707400
Н	-2.01413200	-4.10379200	-1.55221600
Н	-3.38857500	-2.91190800	-1.55895500
Н	-2.44197500	-3.24092700	-2.99591700
C	-2.61521600	-0.49370800	-4.10545300
- H	-3.26174700	-0.74918100	-3.23909400
 Н	-2 50888000	0 61081200	-4 06591300
	-2.28162/00	-0 80210600	-5 37802000
\sim	J.JOI02400	0.09219000	5.5/092000

Н	-4.29298200	-0.26290400	-5.46037400
Н	-2.77654800	-0.69022200	-6.28210700
С	-3.80439700	-2.33349900	-5.36301900
0	-3.32974300	-3.13282800	-6.21334000
Н	-5.06664000	-3.80008000	-4.42103000
N	-4.77679000	-2.79715300	-4.42538800
Н	-5.19402400	-2.15042400	-3.72084500
N	2.87326900	-1.56130700	-0.48974300
Re	4.21425400	-3.14154200	-0.16723600
Br	2.59089600	-4.61914900	-1.73215400
Br	6.04709800	-1.27018800	0.50812900
С	3.42874300	-3.46490000	1.48361700
0	2.86213900	-3.62642200	2.54309300
С	5.41659400	-4.58381700	0.13459000
0	6.17041800	-5.49369300	0.33070800
Н	5.95278800	-2.24820900	-2.12493800
Н	4.91495200	-3.31432500	-2.85642600
0	5.04447300	-2.60832700	-2.19190600

Figure S16. Two-layer ONIOM(B3LYP/LanL2DZ:UFF) optimized B₁₂-ReCORM-**2** and B₁₂-ReCORM-**4**. The different layers are represented with balls and sticks (high) and wireframe (low).