Supplementary Information

Competitive Threading of Ru(bpy)₃ Stopped "V" Type Pseudo[2]rotaxane-like supramolecules

Shuaifan Wu, Xiang Ma, Hongyuan Zhang, Qiaochun Wang and He Tian*

List of Content

Figure S1. UV-Vis spectra of **VRu** (1×10^{-5} M, H₂O at 298K) and after addition of 0 M, 6.67×10^{-4} M, 1×10^{-3} M, 1.2×10^{-3} M, 1.33×10^{-3} M and 1.43×10^{-3} M of β -CD (along the direction of the arrow).

Figure S2. Calculation of the binding constant between VRu and β -CD in VRu $\subset \beta$ -CD.

Figure S3. CD spectra of **VRu** (1.5×10^{-4} M, curve **a**) and **VRu** $\subset \beta$ -CD (curve **b**) in H₂O at 298K.

Figure S4. UV-Vis spectra of VRu (1×10^{-5} M, H₂O at 298K) and after addition of 0 eq., 0.2 eq.,

0.4 eq., 0.6 eq., 0.8 eq. and 1 eq. of CB[7] (along the direction of the arrow).

Figure S5. Calculation of the binding constant between VRu and CB[7] in VRu⊂CB[7].

Figure S6. CD spectra of VRu (1.5×10^{-4} M, curve a) and VRu \subset CB[7] (curve b) in H₂O at 298K.

Figure S7. Fluorescence emission spectra of **VRu** (1.0×10^{-5} M, excited at 450nm in H₂O, 298K) and after addition of CB[7].

Experimental Details

Instruments: ¹H NMR spectra and the ¹³C NMR were measured on a Brüker AV-400 spectrometer in D_2O . The Chemical shifts of all the samples are calibrated to solvent protons at 4.7ppm. And the concentration of all the samples was ca. 1.0×10^{-2} M. The electronic spray ionization (ESI) mass spectra were tested on a HP5989 mass spectrometer. Absorption spectra were done on a Varian Cary 500 UV/Vis spectrophotometer (1-cm quartz cell used), while the CD spectra were recorded on a Jasco J-815 CD spectrophotometer in a 1 mm quartz cell. Melting points were determined by using an X-6 micro-melting point apparatus.

Materials: 2,2'-bipyridin-5-ol, 1,4-dibromobutane, 2-methylpyridine, 4-(dimethylamino) benzaldehyde, cis-Ru(bpy)Cl₂•2H₂O, KNO₃, NH₄PF₆, tetrabutylaminochlorate and β -CD were commercially available and used as received. CB[7] were synthesized according to the early report. Acetone was dried with anhydrous magnesium sulfate. Acetonitrile and DMF were dried by 4A molecular sieve and distilled under reduced pressure before use.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2011

Synthesis of 2

A suspension of 500mg (2.9mmol) 2,2'-bipyridin-5-ol and 803mg (5.8mmol) K₂CO₃ in 30ml acetone was stirred for 30min at 50°C, then 1.9g (8.7mmol) 1,5-dibromopentane was added and refluxed for another 4hours. After the mixture was cooled to room temperature, precipitate was removed by filtration, the filtrate was concentrated under reduced pressure, 50ml hexane was added and the product was collected by filtration to afford compound **2** 650mg (72.8%). M.p. $68.9 \sim 70.3^{\circ}$ C. ¹H NMR (400MHz, CDCl₃), δ ppm=8.64 (d, *J*=4.8Hz, 1H), 8.36-8.29 (m, 3H), 7.78 (dd, *J*=2.0, 8.0 Hz, 1H), 7.30 (dd, *J*=2.8, 8.8 Hz, 1H), 7.27-7.23 (m, 1H), 4.11 (t, *J*=5.6Hz, 2H), 3.51 (t, *J*=6.4Hz, 2H), 2.15-2.07(m, 2H), 2.05-1.97(m, 2H). ¹³C NMR (100 MHz, CDCl₃), δ ppm=156.035, 155.387, 149.055, 137.245, 136.836, 122.925, 121.700, 121.525, 120.401, 67.389, 33.235, 29.298, 27.824. HRMS (ESI, *m/z*): calcd for C₁₄H₁₆N₂OBr, 307.0446, found 307.0443.

Synthesis of 3

A mixture of 500mg (1.6mmol) compound **2** and 304mg (3.2mmol) 2-methylpyridine in acetonitrile was refluxed for 2 days. Then the mixture was cooled to room temperature, solvent was removed under reduced pressure, 10ml EA was added, the precipitation was filtrated and washed with 5ml EA to afford compound **3** (440mg, 67%). ¹H NMR (400MHz, DMSO-d₆), δ ppm=9.02 (d, *J*=6.4Hz, 1H), 8.63 (d, *J*=4Hz, 1H), 8.50-8.45 (m, 1H), 8.39 (d, *J*=3.2Hz, 1H), 8.34 (d, *J*=8.8Hz, 1H), 8.27 (d, *J*=8Hz, 1H), 8.05 (d, *J*=7.6Hz, 1H), 7.98 (t, *J*=7.6Hz, 1H), 7.92-7.87 (m, 1H), 7.56-7.52 (m, 1H), 7.40-7.36 (m, 1H), 4.64 (t, *J*=8Hz, 2H), 4.20 (t, *J*=6.4Hz, 2H), 2.86 (s, 3H), 2.05 (br t, 2H), 1.88 (br t, 2H). HRMS (ESI, *m/z*): [M-Br⁻]⁺ calcd for C₂₀H₂₂N₃O, 320.1763, found 320.1760.

Synthesis of 4

A mixture of 400mg (1.0mmol) compound **3** and 149mg (1.0mmol) 4-(dimethylamino) benzaldehyde in ethanol was heated to 60°C, a drop of piperidine was added, the mixture was refluxed for 4h. After cooled, solvent was removed under reduced pressure, solid was recrystallized by ethanol to afford **4·Br**. The counter anion of **4·Br** was exchanged with NH₄PF₆ to provide **4·PF**₆(423mg, 71%). ¹H NMR (400MHz, DMSO-d6), δ ppm=8.82 (d, *J*=6.0Hz, 1H), 8.63 (d, *J*=4.4Hz, 1H), 8.47 (d, *J*=8.0Hz, 1H), 8.39-8.31 (m, 3H), 8.27 (d, *J*=8.0Hz, 1H), 7.96-7.86 (m, 2H), 7.76 (t, *J*=6.8Hz, 1H), 7.63 (d, *J*=8.8Hz, 2H), 7.53-7.48 (m, 1H), 7.41-7.35 (m, 1H), 7.24 (d, *J*=15.6Hz, 1H), 6.67 (d, *J*=8.8Hz, 2H), 4.82 (t, *J*=7.6Hz, 2H), 4.22 (t, *J*=6.0Hz, 2H), 2.94 (s, 6H), 2.09-1.98 (m, 2H), 1.95-1.85 (m, 2H). HRMS (ESI, *m/z*): [M-PF₆⁻]⁺ calcd for C₂₉H₃₁N₄O, 451.2942, found 451.2945.

Synthesis of 5

A solution of cis-Ru(bpy)Cl₂•2H₂O 196mg (0.376mmol) and AgPF₆ 191mg (0.753mmol) in acetone 10ml was stirred at room temperature for 10h. The precipitate was filtered and washed with 5ml acetone. 200mg (0.376mmol) Compound **4** was added to the filtrate. The reaction flask was wrapped with aluminum foil and refluxed under Ar atmosphere for 12hours. After it was cooled to room temperature, solvent was removed under reduced pressure. The crude product was purified by column chromatography, using silica gel and a mixture of CH₃CN/H₂O/sat. KNO₃ 10/1/1 as elute. The red band was collected, and the counter anion exchanged with NH₄PF₆ to get compound **5·3PF₆** (366mg, 75 %). A solution of 200 mg (0.154mmol) Compound **5·3PF₆** and 256mg (0.923mmol) tetrabutylaminochlorate in 5ml acetone was stirred at room temperature to produce a precipitate which was collected by filtration and washed with acetone to provide compound **5·3Cl** (136mg, 91%). ¹H NMR (400MHz, D₂O), δ ppm=8.46-8.40 (m, 6H), 8.34 (d, *J*=8Hz, 1H), 8.21 (t, *J*=8Hz, 1H), 8.16-8.09 (m, 3H), 7.99-7.91 (m, 3H), 7.73-7.64 (m, 6H), 7.63-7.55 (m, 3H), 7.47 (d, *J*=15.6Hz, 1H), 7.29-7.21 (m, 4H), 7.18-7.08 (m, 2H), 6.98 (d, *J*=8.8Hz, 2H), 6.49 (d, *J*=15.6Hz, 1H), 6.19 (d, *J*=8.8Hz, 2H), 4.42 (t, *J*=7.6Hz, 2H), 4.17 (t, *J*=6Hz, 2H), 2.74 (s, 6H), 1.97-1.75 (m, 4H). HRMS (ESI, *m/z*): $[M-2Cl^{-}]^{2+}$ calcd for C₄₉H₄₇ClN₈ORu, 450.1294, found 450.1290.

Figure S1 UV-Vis spectra of **VRu** (1×10^{-5} M, H₂O at 298K) and after addition of 0M, 6.67×10^{-4} M, 1×10^{-3} M, 1.2×10^{-3} M, 1.33×10^{-3} M and 1.43×10^{-3} M of β -CD (along the direction of the arrow).

Figure S2 Calculation of the binding constant between VRu and β -CD in VRu $\subset \beta$ -CD.

Figure S3 CD spectra of **VRu** (1.5×10^{-4} M, curve **a**) and **VRu** $\subset \beta$ -CD (curve **b**) in H₂O at 298K.

Figure S4 UV-Vis spectra of VRu (1×10^{-5} M, H₂O at 298K) and after addition of 0 eq., 0.2 eq., 0.4 eq., 0.6 eq., 0.8 eq. and 1 eq. of CB[7] (along the direction of the arrow).

Figure S5 Calculation of the binding constant between VRu and CB[7] in VRu⊂CB[7].

Figure S6 CD spectra of VRu (1.5×10^{-4} M, curve a) and VRu \subset CB[7] (curve b) in H₂O at 298K.

Figure S7 Fluorescence emission spectra of VRu (1.0×10^{-5} M, excited at 450nm in H₂O, 298K) and after addition of CB[7].^{S1}

References:

S1 (a) R. L. Halterman, J. L. Moore, L. M. Mannel. J. Org. Chem. 2008, 73, 3266-3269; (b) C.
Marquez, R. R. Hudgins, W. M. Nau. J. Am. Chem. Soc. 2004, 126, 5806; (c) J. Mohanty, A. C.
Bhasikuttan, W. M. Nau, H. Pal. J. Phys. Chem. B 2006, 110, 5132.