Supporting Information

for

Na[B(hfip)₄] (hfip = OC(H)(CF₃)₂): A Weakly Coordinating Anion Salt and its First Application to Prepare Ionic Liquids

Safak Bulut, Petra Klose, and Ingo Krossing*

* To whom the correspondence should be addressed.

Dr. Safak Bulut, Petra Klose, Prof. Dr. Ingo Krossing

Albert-Ludwigs-Universität Freiburg, Institut für Anorganische und Allgemeine Chemie, Freiburg Institute of Advanced Studies (FRIAS), and Freiburger Materialforschungszentrum (FMF), Albertstr. 21, D-79104 Freiburg (Germany). Fax: (+49) 761 203 6001. E-mail: krossing@uni-freiburg.de. Homepage: http://portal.uni-freiburg.de/molchem.

Table of contents

- 1 Synthesis and Characterization of $Na^{+}[B(hfip)_{4}]^{-}$.(Solvent)_x
- 2 NMR Spectra of $Na^{+}[B(hfip)_{4}]^{-}.(THF)_{2}$ (1) and $Na^{+}[B(hfip)_{4}]^{-}.(DME)$ (2)
- **3** Elemental Analysis of [B(hfip)₄]⁻ Ionic Liquids
- 4 Temperature dependent viscosity measurements
- 5 Temperature dependent conductivity measurements
- 6 Crystal Data
- 7 References

1 Synthesis and Characterization of Na⁺[B(hfip)₄]⁻.(Solvent)_x

The synthesis of Na⁺[B(hfip)₄]⁻ was investigated by three reaction pathways (Scheme S1).

Scheme S1: The three pathways tested for the synthesis of the $Na^{+}[B(hfip)_{4}]^{-}$ salt. **a**) Using boric acid, hfipH and $Na^{+}[hfip]^{-}$ in two reaction steps, **b**) Using boric acid, hfipH and NaOH in a batch reaction, **c**) Using NaBH₄ and hfipH in a one pot reaction.

a) With Boric Acid, hfipH and Na⁺[hfip]⁻ as Starting Materials

In the first step, the Lewis acid $[B(hfip)_3]$ should be synthesized using boric acid and hfipH as starting materials (Scheme S1a). The synthesis of $[B(hfip)_3]$ using the more expensive boranemethyl sulfide complex $[BH_3.S(CH_3)_2]$ and hfipH was already reported,¹ but we hoped for an easier and cheaper synthesis of $[B(hfip)_3]$. From $[B(hfip)_3]$ and known Na⁺[hfip]^{-,2,3} the Na⁺[B(hfip)_4]⁻ salt should be prepared.

Nr.	<i>n</i> _(boric acid) : <i>n</i> _(hfipH)	Solvent	Remarks
(1)	1:5	none	hfipH was added to the boric acid. Immediate heating
			of the reaction flask was observed. The reaction
			mixture was stirred for 48 h at r.t.
(2)	1:8	none	hfipH was added to the boric acid. Immediate heating
			of the reaction flask was observed. The reaction
			mixture was refluxed for 4 h.
(3)	1:4.5	water	hfipH was added dropwise to a solution of boric acid in
			water. Immediate heating of the reaction flask was
			observed. The reaction mixture was stirred for 6 h at r.t.

Table S1: Preparation attempts of $[B(hfip)_3]$ according Scheme S1a using several solvents and reactionconditions.

b) With Boric Acid, hfipH and NaOH as Starting Materials - Batch Reactions

The preparation of $Na^+[B(hfip)_4]^-$ was also tested from boric acid, hfipH and NaOH as starting materials. In Table S2, the batch reactions carried out in various solvents are summarized.

Nr.	<i>n</i> (boric acid): <i>n</i> (NaOH): <i>n</i> (hfipH)	Solvent	Remarl	KS				
(4)	1:1:4.5	water	hfipH	was	added	dropwise	to	a
(5)	1:1:4.5	hexane	solution	/suspens	sion of bo	oric acid and	NaOł	H in
(6)	1:1:4.5	CH ₃ CN	the solv	vent us	ed. Imme	ediate heatin	g of	the
			reaction	flask	was obs	served. The	reac	tion
			mixture	was stir	red for 24	h at r.t.		

Table S2: Preparation attempts of $Na^+[B(hfip)_4]^-$ according Scheme S1b using several solvents and conditions.

All reactions given in Table S1 and Table S2 were studied by multinuclear NMR, but no formation of $[B(hfip)_3]$ or $[B(hfip)_4]^-$ was observed. The product of reaction 1 in Table S1 was also investigated by ESI- and APCI-MS, but no signals for the expected products were observed and the high number of signals suggests that several products are generated by this reaction. In conclusion, we have to note that the synthesis of $[B(hfip)_3]$ or $Na^+[B(hfip)_4]^-$ according to Scheme S1a-b and using boric acid as a starting material were not successful.

c) With NaBH₄ and hfipH as Starting Materials

The next tested synthesis of Na⁺[B(hfip)₄]⁻ started from NaBH₄ and hfipH (Scheme S1c). The synthesis of Li⁺[Al(OR^F)₄]⁻ (R^F = C(H)(CF₃)₂, C(CH₃)(CF₃)₂ or C(CF₃)₃) works well using LiAlH₄ and the fluorinated alcohol as starting materials in hexane or heptane as reaction medium.⁴ Non-polar solvents are very helpful for an easy separation of the products after reaction. However, here we found two distinct differences between the synthesis of aluminate and borate salts: *i*) the basicity of the hydrides in [BH₄]⁻ is lower than that in [AlH₄]⁻; *ii*) boron is smaller than aluminum and thus a higher steric impediment can be expected when binding four large alkoxy groups to a central boron atom.

Both differences are negative for the synthesis of the Na⁺[B(hfip)₄]⁻ salt: Uncompleted conversions of the substitution of the fourth hydride of NaBH₄ were observed in many cases (see Table S3; ¹¹B- and ¹⁹F-NMR analysis). ¹¹B-NMR is very helpful and allows for an easy differentiation between the intermediate Na⁺[H-B(hfip)₃]⁻ and the desired Na⁺[B(hfip)₄]⁻ product through the ¹*J*(B, H) and the ³*J*(B, H) coupling constants. In all reactions given in Table S3, except that in hexane, the first three hydrides reacted fast and completely. However,

in ether solvents with long reflux times the main product was $Na^{+}[B(hfip)_{4}]^{-}$, and $Na^{+}[H-B(hfip)_{3}]^{-}$ was observed only as an intermediate.

Nr.	<i>n</i> _(NaBH4) : <i>n</i> _(hfipH)	Solvent ^[a]	T _b	Refluxing-	Conversion [%] ^[b]	
			[°C]	time [h]	Na ⁺ [H-B(hfip) ₃] ⁻	Na ⁺ [B(hfip) ₄] ⁻
(7)	1:25	none	59 ^[c]	6	47	53
(8)	1:4.5	<i>n</i> -hexane	69	6	11	< 1 ^[d]
(9)	1:4.5	Et ₂ O	35	60 ^[e]	41	59
(10)	1:4.5	THF	66	$40^{[f]}$	_	100
(11)	1:4.5	DME	85	4	_	100

Table S3: Attempts for the synthesis of Na⁺[B(hfip)₄]⁻ according Scheme S1c by using various solvents; their boiling points $T_{\rm b}$, reaction-conditions and the conversions for main product and intermediate.

[a] Et₂O: diethyl ether, THF: tetrahydrofuran, DME: 1,2-dimethoxyethane. [b] The conversions were determined from the integrals of the corresponding signals in the ¹¹B-NMR spectra. [c] T_b of hfipH, which was used in high excess in reaction 7. [d] The remaining NaBH₄ (88%) did not react. [e] The reaction lasted 7 d, altogether 60 h under reflux and was stirred in the remaining time at r.t. [f] The reaction lasted 36 d, altogether 40 h under reflux and was stirred in the remaining time at r.t.

In the reactions 7 to 9 in Table S3, no complete conversions were observed. The reaction in *n*-hexane gives the lowest conversion and in contrast to the reactions in other solvents a high amount (88%) of non-reacted NaBH₄ was observed. Due to the non-solubility and low basicity of NaBH₄ in *n*-hexane, the reaction was slow and incomplete. The 34 °C lower boiling donor solvent Et₂O that dissolves NaBH₄ allows for a better conversion, but the reaction does not go to completion (cf. Figure S1, reaction in Et₂O monitored by ¹¹B-NMR analysis).

Figure S1: ¹¹B-NMR spectra during the reaction of NaBH₄ and hfipH according to Scheme S1c in Et₂O (reaction 9 in Table S3). [D₆]acetone for a) and b), and CD_2Cl_2 for c) were used as NMR solvents. Under each signal, the integral value given corresponds to the percentage of Na⁺[BH(hfip)₃]⁻ (doublet, higher chemical shift) and Na⁺[B(hfip)₄]⁻ (quintet, lower chemical shift), respectively.

Aside from $[H-B(hfip)_3]^-$ and $[B(hfip)_4]^-$ species, we recognize in the ¹¹B-NMR spectra (Figure S1) other non-assigned boron species of minor intensities, which appear and disappear in the course of the reaction. THF provides comparable solubilities as Et₂O, but boils 31 °C higher and thus reaction 10 in THF leads to completion after 40 h reflux. 1,2-dimethoxyethane (DME), offers both, very good solubilities for NaBH₄ / intermediates and an even higher b.p. of 85 °C, so that complete conversion was observed in only 4 h.

2 NMR Spectra of Na⁺[B(hfip)₄]⁻.(THF)₂ (1) and Na⁺[B(hfip)₄]⁻.(DME) (2)

Figure S2: a) 1 H-, **b)** 1 H{ 11 B}- and **c)** 11 B-NMR spectra of **1** in CDCl₃.

Figure S3: a) ¹¹B, ¹H HSQC- and b) ¹⁹F-NMR spectra of 1 in CDCl₃.

Figure S4: ¹H-NMR spectrum of **2** in CDCl₃ after 10 h drying in vacuum (0.1 Pa) at 40–45 °C.

Figure S5: a) ¹¹B- and **b**) ¹⁹F-NMR spectra of **2** in CDCl₃ after 10 h drying in vacuum (0.1 Pa) at 40–45 °C.

Figure S6: ¹H-NMR spectra of **2** in [D₆]DMSO after drying in vacuum (0.1 Pa) **a**) at 60 °C (5–6 h), **b**) at 80 °C (4–5 h).

Figure S7: ¹¹B- (left) and ¹⁹F- (right) NMR spectra of **2** in $[D_6]$ DMSO after drying in vacuum (0.1 Pa) **a-b**) at 60 °C (5–6 h), **c-d**) at 80 °C (4–5 h).

3 Elemental Analysis of $[B(hfip)_4]^-$ Ionic Liquids

Salt	C	Н	Ν	
	Exp (Calc) [%]	Exp (Calc) [%]	Exp (Calc) [%]	
$[C_4MIM]^+[B(hfip)_4]^-(4)$	29.72 (29.36)	2.34 (2.34)	3.36 (3.42)	
$[C_4MMIM]^+[B(hfip)_4]^-(5)$	30.43 (30.31)	2.59 (2.54)	3.35 (3.37)	
$[C_6MIM]^+[B(hfip)_4]^-(7)$	31.33 (31.23)	2.73 (2.74)	3.30 (3.31)	

 Table S4: The results of the elemental analysis for 4, 5 and 7 (average values of two measurements).

4 Temperature dependent viscosity measurements

Programmable rotation viscosimeter from Brookfield (RVDV-III UCP) in an atmosphere of dry air in a specifically purpose-built glove box (relative humidity below 0.1%), connected with a cryostat for the tempering of the samples (accuracy about ± 0.1 °C).

5 Temperature dependent conductivity measurements

Metrohm 712 conductometer in an argon filled glove box (water and oxygen content below 1 ppm) and a metal thermostat for the tempering of the samples (accuracy about ± 0.1 °C).

6 Crystal Data

	X	y	Z	U(eq)
Na(1)	7416(1)	4588(1)	2624(1)	31(1)
B(1)	5680(2)	7193(2)	2373(1)	24(1)
O(1)	6743(1)	6669(1)	3013(1)	26(1)
O(2)	4525(1)	8134(1)	2753(1)	27(1)
O(3)	6433(1)	7727(1)	1642(1)	25(1)
O(4)	5178(1)	6076(1)	2127(1)	25(1)
O(5)	8357(2)	3283(1)	3675(1)	41(1)
O(6)	7800(2)	2957(1)	1736(1)	40(1)
F(1)	9514(2)	7355(2)	2522(1)	60(1)
F(2)	9808(2)	7577(2)	3829(1)	70(1)
F(3)	9506(2)	5815(2)	3387(1)	70(1)
F(4)	5453(2)	7612(2)	4498(1)	66(1)
F(5)	7395(2)	8187(2)	4831(1)	86(1)
F(6)	7408(2)	6254(2)	4739(1)	81(1)
F(7)	1963(2)	10478(1)	1724(1)	55(1)
F(8)	1523(1)	9163(1)	2710(1)	50(1)
F(9)	2517(1)	8517(1)	1515(1)	50(1)
F(10)	5426(1)	10226(1)	3252(1)	47(1)
F(11)	3222(2)	10136(1)	3733(1)	59(1)
F(12)	3587(2)	11436(1)	2722(1)	60(1)
F(13)	8558(1)	5599(1)	1406(1)	38(1)
F(14)	9289(1)	7167(1)	768(1)	42(1)
F(15)	8545(1)	5822(1)	50(1)	47(1)
F(16)	7117(1)	9076(1)	218(1)	41(1)
F(17)	6649(2)	7722(1)	-595(1)	51(1)
F(18)	4936(2)	8685(1)	254(1)	54(1)
F(19)	4949(1)	4027(1)	3095(1)	45(1)
F(20)	4022(2)	5636(1)	3809(1)	49(1)
F(21)	2600(1)	4557(1)	3316(1)	51(1)
F(22)	3341(2)	5991(1)	910(1)	57(1)
F(23)	4163(2)	4170(1)	1419(1)	58(1)
F(24)	1918(2)	5061(2)	1720(1)	61(1)
C(1)	7404(2)	7441(2)	3461(1)	34(1)
C(2)	9077(3)	7042(2)	3304(1)	46(1)
C(3)	6915(3)	7359(3)	4392(1)	51(1)
C(4)	4031(2)	9303(2)	2385(1)	31(1)

Table S5: Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for **1**. U(eq) is defined as one third of the trace of the orthogonalized U_{ii} tensor.

C(5)	2496(2)	9372(2)	2087(1)	38(1)
C(6)	4049(2)	10280(2)	3029(1)	40(1)
C(7)	6710(2)	7160(2)	869(1)	26(1)
C(8)	8289(2)	6453(2)	763(1)	32(1)
C(9)	6368(2)	8166(2)	179(1)	34(1)
C(10)	3777(2)	5842(2)	2349(1)	29(1)
C(11)	3814(2)	5006(2)	3146(1)	35(1)
C(12)	3286(2)	5252(2)	1599(1)	40(1)
C(13)	7761(3)	3146(2)	4527(1)	47(1)
C(14)	9717(3)	2387(2)	3620(2)	47(1)
C(15)	8037(3)	1756(2)	4703(2)	47(1)
C(16)	9449(3)	1279(2)	4170(2)	49(1)
C(17)	8747(3)	2665(2)	985(2)	49(1)
C(18)	7137(3)	1901(2)	1986(2)	50(1)
C(19)	8143(3)	807(2)	1616(2)	49(1)
C(20)	8684(3)	1350(2)	779(2)	47(1)

				4					ംറ		,	
Table	CC.	I Indea and	acondinator ($\sim 10^{4}$) and inates	min dia	nloamant	momentana (· 🗛 🕹	· · · 103	1) for 1	£.
I able	50:	пудгорен	coordinates (XIU) and isotro	DIC UISI	пасетен	Darameters (A	XIU		1
	~ ~ ~				,						/	-

	X	У	Z	U(eq)
H(1A)	7190(20)	8310(20)	3263(14)	43(6)
H(4A)	4650(20)	9492(17)	1916(12)	25(5)
H(7A)	6080(20)	6568(18)	780(11)	25(5)
H(10A)	3070(20)	6554(19)	2473(12)	27(5)
H(13A)	8310(30)	3580(20)	4907(17)	62(8)
H(13B)	6710(30)	3540(30)	4553(17)	65(8)
H(14A)	9990(30)	2220(30)	3016(19)	70(8)
H(14B)	10440(30)	2800(20)	3843(16)	57(8)
H(15A)	7220(30)	1420(30)	4525(17)	67(8)
H(15B)	8080(30)	1580(30)	5292(18)	66(8)
H(16A)	9290(30)	640(30)	3804(17)	64(8)
H(16B)	10250(30)	1010(30)	4524(18)	67(8)
H(17A)	8430(30)	3240(30)	565(19)	73(9)
H(17B)	9850(40)	2730(30)	1160(20)	87(10)
H(18A)	7030(30)	1870(20)	2595(16)	46(6)
H(18B)	6170(40)	1860(30)	1630(20)	110(12)
H(19A)	7610(30)	150(20)	1559(15)	52(7)
H(19B)	9020(30)	580(30)	2080(20)	83(9)
H(20A)	8030(30)	1380(20)	384(17)	55(8)
H(20B)	9610(40)	930(30)	595(19)	74(9)

Table S7: Bond lengths [Å] and angles [°] for **1**.

Na(1)-O(5)	2.2589(17)	O(3)-B(1)-O(1)	110.58(14)
Na(1)-O(6)	2.2852(16)	O(4)-B(1)-O(1)	101.85(14)
Na(1)-O(1)	2.3436(15)	O(2)-B(1)-Na(1)	143.69(12)
Na(1)-F(13)	2.4607(15)	O(3)-B(1)-Na(1)	105.33(11)
Na(1)-O(4)	2.5282(16)	O(4)-B(1)-Na(1)	56.74(8)
Na(1)-F(19)	2.5357(16)	O(1)-B(1)-Na(1)	49.59(8)
Na(1)-F(3)	2.929(2)	C(1)-O(1)-B(1)	120.82(14)
Na(1)-B(1)	3.016(2)	C(1)-O(1)-Na(1)	133.92(12)
B(1)-O(2)	1.450(2)	B(1)-O(1)-Na(1)	101.53(10)
B(1)-O(3)	1.467(2)	C(4)-O(2)-B(1)	124.18(14)
B(1)-O(4)	1.472(2)	C(7)-O(3)-B(1)	122.70(14)
B(1)-O(1)	1.487(2)	C(10)-O(4)-B(1)	123.52(13)
O(1)-C(1)	1.388(2)	C(10)-O(4)-Na(1)	119.88(11)
O(2)-C(4)	1.390(2)	B(1)-O(4)-Na(1)	94.13(10)
O(3)-C(7)	1.388(2)	C(13)-O(5)-C(14)	104.82(16)
O(4)-C(10)	1.390(2)	C(13)-O(5)-Na(1)	128.94(13)
O(5)-C(13)	1.437(3)	C(14)-O(5)-Na(1)	126.24(13)
O(5)-C(14)	1.438(3)	C(17)-O(6)-C(18)	108.75(16)
O(6)-C(17)	1.437(2)	C(17)-O(6)-Na(1)	132.83(13)
O(6)-C(18)	1.441(3)	C(18)-O(6)-Na(1)	117.95(12)
F(1)-C(2)	1.329(3)	C(2)-F(3)-Na(1)	109.48(13)
F(2)-C(2)	1.337(3)	C(8)-F(13)-Na(1)	144.24(11)
F(3)-C(2)	1.329(3)	C(11)-F(19)-Na(1)	114.53(11)
F(4)-C(3)	1.329(3)	O(1)-C(1)-C(3)	109.72(17)
F(5)-C(3)	1.333(3)	O(1)-C(1)-C(2)	107.99(16)
F(6)-C(3)	1.318(3)	C(3)-C(1)-C(2)	111.96(18)
F(7)-C(5)	1.337(2)	F(3)-C(2)-F(1)	106.4(2)
F(8)-C(5)	1.332(2)	F(3)-C(2)-F(2)	108.4(2)
F(9)-C(5)	1.333(2)	F(1)-C(2)-F(2)	107.20(18)
F(10)-C(6)	1.342(3)	F(3)-C(2)-C(1)	111.62(18)
F(11)-C(6)	1.330(2)	F(1)-C(2)-C(1)	110.91(18)
F(12)-C(6)	1.337(2)	F(2)-C(2)-C(1)	112.1(2)
F(13)-C(8)	1.355(2)	F(6)-C(3)-F(4)	109.0(2)
F(14)-C(8)	1.327(2)	F(6)-C(3)-F(5)	106.8(2)
F(15)-C(8)	1.336(2)	F(4)-C(3)-F(5)	106.48(19)
F(16)-C(9)	1.329(2)	F(6)-C(3)-C(1)	112.40(19)
F(17)-C(9)	1.332(2)	F(4)-C(3)-C(1)	110.31(19)
F(18)-C(9)	1.338(2)	F(5)-C(3)-C(1)	111.6(2)
F(19)-C(11)	1.349(2)	O(2)-C(4)-C(6)	108.56(16)
F(20)-C(11)	1.331(2)	O(2)-C(4)-C(5)	109.67(16)

F(21)-C(11)	1.321(2)	C(6)-C(4)-C(5)	111.77(16)
F(22)-C(12)	1.335(3)	F(8)-C(5)-F(9)	106.58(17)
F(23)-C(12)	1.330(3)	F(8)-C(5)-F(7)	107.33(16)
F(24)-C(12)	1.326(2)	F(9)-C(5)-F(7)	106.98(17)
C(1)-C(3)	1.519(3)	F(8)-C(5)-C(4)	112.79(17)
C(1)-C(2)	1.533(3)	F(9)-C(5)-C(4)	110.44(16)
C(4)-C(6)	1.519(3)	F(7)-C(5)-C(4)	112.37(17)
C(4)-C(5)	1.521(3)	F(11)-C(6)-F(12)	107.43(17)
C(7)-C(8)	1.518(3)	F(11)-C(6)-F(10)	107.06(19)
C(7)-C(9)	1.524(3)	F(12)-C(6)-F(10)	106.42(17)
C(10)-C(12)	1.521(3)	F(11)-C(6)-C(4)	113.07(17)
C(10)-C(11)	1.528(3)	F(12)-C(6)-C(4)	112.28(19)
C(13)-C(15)	1.511(3)	F(10)-C(6)-C(4)	110.22(16)
C(14)-C(16)	1.512(3)	O(3)-C(7)-C(8)	111.07(15)
C(15)-C(16)	1.522(3)	O(3)-C(7)-C(9)	107.93(14)
C(17)-C(20)	1.507(3)	C(8)-C(7)-C(9)	111.73(15)
C(18)-C(19)	1.484(3)	F(14)-C(8)-F(15)	107.72(15)
C(19)-C(20)	1.522(3)	F(14)-C(8)-F(13)	106.70(16)
		F(15)-C(8)-F(13)	106.50(15)
O(5)-Na(1)-O(6)	89.87(6)	F(14)-C(8)-C(7)	113.94(16)
O(5)-Na(1)-O(1)	113.49(6)	F(15)-C(8)-C(7)	111.91(16)
O(6)-Na(1)-O(1)	156.56(6)	F(13)-C(8)-C(7)	109.67(14)
O(5)-Na(1)-F(13)	132.81(6)	F(16)-C(9)-F(17)	107.07(16)
O(6)-Na(1)-F(13)	82.27(5)	F(16)-C(9)-F(18)	107.17(16)
O(1)-Na(1)-F(13)	80.25(5)	F(17)-C(9)-F(18)	107.15(16)
O(5)-Na(1)-O(4)	145.98(6)	F(16)-C(9)-C(7)	113.04(16)
O(6)-Na(1)-O(4)	105.50(6)	F(17)-C(9)-C(7)	112.67(15)
O(1)-Na(1)-O(4)	56.10(5)	F(18)-C(9)-C(7)	109.43(16)
F(13)-Na(1)-O(4)	80.09(5)	O(4)-C(10)-C(12)	107.49(15)
O(5)-Na(1)-F(19)	86.70(6)	O(4)-C(10)-C(11)	109.66(16)
O(6)-Na(1)-F(19)	87.75(6)	C(12)-C(10)-C(11)	112.48(16)
O(1)-Na(1)-F(19)	95.22(5)	F(21)-C(11)-F(20)	108.06(15)
F(13)-Na(1)-F(19)	138.84(5)	F(21)-C(11)-F(19)	107.25(16)
O(4)-Na(1)-F(19)	64.33(5)	F(20)-C(11)-F(19)	106.04(17)
O(5)-Na(1)-F(3)	73.95(6)	F(21)-C(11)-C(10)	113.56(17)
O(6)-Na(1)-F(3)	130.82(6)	F(20)-C(11)-C(10)	109.97(16)
O(1)-Na(1)-F(3)	59.19(5)	F(19)-C(11)-C(10)	111.60(15)
F(13)-Na(1)-F(3)	76.67(5)	F(24)-C(12)-F(23)	108.03(18)
O(4)-Na(1)-F(3)	113.72(5)	F(24)-C(12)-F(22)	107.30(18)
F(19)-Na(1)-F(3)	135.39(5)	F(23)-C(12)-F(22)	106.56(18)
O(5)-Na(1)-B(1)	139.67(6)	F(24)-C(12)-C(10)	112.71(17)

O(6)-Na(1)-B(1)	129.12(6)	F(23)-C(12)-C(10)	111.83(18)
O(1)-Na(1)-B(1)	28.88(5)	F(22)-C(12)-C(10)	110.13(17)
F(13)-Na(1)-B(1)	71.13(5)	O(5)-C(13)-C(15)	104.44(18)
O(4)-Na(1)-B(1)	29.13(5)	O(5)-C(14)-C(16)	106.03(19)
F(19)-Na(1)-B(1)	85.26(6)	C(13)-C(15)-C(16)	103.62(19)
F(3)-Na(1)-B(1)	84.59(6)	C(14)-C(16)-C(15)	104.83(19)
O(2)-B(1)-O(3)	110.39(14)	O(6)-C(17)-C(20)	106.73(19)
O(2)-B(1)-O(4)	114.30(15)	O(6)-C(18)-C(19)	105.71(19)
O(3)-B(1)-O(4)	109.93(14)	C(18)-C(19)-C(20)	102.0(2)
O(2)-B(1)-O(1)	109.50(14)	C(17)-C(20)-C(19)	103.32(18)

Table S8: Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for **2**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	X	y y	Z	U(eq)	
Na(1)	1561(1)	4103(1)	2621(1)	25(1)	
B(1)	3509(2)	1708(2)	2622(1)	17(1)	
O (1)	3678(1)	3102(1)	2570(1)	17(1)	
O(2)	2207(1)	1855(1)	2287(1)	18(1)	
O(3)	3506(1)	957(1)	3698(1)	18(1)	
O(4)	4534(1)	1130(1)	1916(1)	18(1)	
O(5)	1084(1)	6168(1)	1670(1)	27(1)	
O(6)	-347(1)	5039(1)	3518(1)	26(1)	
F(1)	5632(1)	3655(1)	981(1)	34(1)	
F(2)	4818(1)	5434(1)	1496(1)	38(1)	
F(3)	6687(1)	4468(1)	1896(1)	44(1)	
F(4)	4136(1)	3404(1)	4574(1)	33(1)	
F(5)	3465(1)	5132(1)	3499(1)	36(1)	
F(6)	5464(1)	4798(1)	3785(1)	42(1)	
F(7)	505(1)	589(1)	711(1)	51(1)	
F(8)	806(1)	-93(1)	2320(1)	47(1)	
F(9)	-260(1)	1793(1)	1841(1)	54(1)	
F(10)	1165(1)	3787(1)	800(1)	43(1)	
F(11)	1699(1)	2638(1)	-397(1)	42(1)	
F(12)	3179(1)	3238(1)	280(1)	42(1)	
F(13)	1535(1)	2665(1)	4427(1)	33(1)	
F(14)	2445(1)	1532(1)	5740(1)	39(1)	
F(15)	575(1)	1134(1)	5502(1)	48(1)	
F(16)	3843(1)	-827(1)	5463(1)	38(1)	
F(17)	1862(1)	-1270(1)	5724(1)	43(1)	
F(18)	3172(1)	-1735(1)	4384(1)	51(1)	
F(19)	6866(1)	642(1)	718(1)	36(1)	

F(20)	7576(1)	-854(1)	1965(1)	37(1)
F(21)	7117(1)	1145(1)	2156(1)	35(1)
F(22)	5545(1)	-2311(1)	2378(1)	46(1)
F(23)	5156(1)	-1121(1)	884(1)	44(1)
F(24)	3652(1)	-1231(1)	2207(1)	37(1)
C(1)	4823(1)	3442(1)	2779(1)	19(1)
C(2)	5498(2)	4263(2)	1777(1)	26(1)
C(3)	4482(2)	4203(2)	3663(1)	26(1)
C(4)	2033(2)	1564(2)	1342(1)	20(1)
C(5)	756(2)	966(2)	1547(1)	32(1)
C(6)	2015(2)	2813(2)	492(1)	27(1)
C(7)	2407(2)	493(2)	4317(1)	21(1)
C(8)	1744(2)	1446(2)	5014(1)	28(1)
C(9)	2827(2)	-845(2)	4982(1)	30(1)
C(10)	5342(1)	-12(1)	2240(1)	20(1)
C(11)	6733(2)	229(2)	1757(1)	26(1)
C(12)	4932(2)	-1178(2)	1916(1)	28(1)
C(13)	1935(2)	6930(2)	894(2)	39(1)
C(14)	144(2)	6952(2)	2245(1)	28(1)
C(15)	-909(2)	6139(2)	2818(1)	29(1)
C(16)	-1325(2)	4352(2)	4210(2)	43(1)

Table S9: Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters (Å	$^{2} \times 10^{3}$) for 2 .
--	----------------------	------------------

	X	У	Ζ	U(eq)
H(1A)	5445(15)	2718(16)	2998(12)	14(4)
H(4A)	2736(16)	929(16)	1093(12)	16(4)
H(7A)	1758(17)	371(17)	3947(13)	22(4)
H(10A)	5374(15)	-255(15)	2953(13)	13(4)
H(13A)	1430(20)	7530(20)	370(18)	50(6)
H(13B)	2550(20)	6320(20)	538(18)	49(6)
H(13C)	2450(20)	7350(20)	1202(19)	59(7)
H(14A)	-229(19)	7720(20)	1775(15)	35(5)
H(14B)	549(19)	7260(19)	2746(16)	35(5)
H(15A)	-1341(19)	5800(20)	2318(16)	38(5)
H(15B)	-1590(20)	6690(20)	3249(16)	39(5)
H(16A)	-910(20)	3700(20)	4699(17)	44(6)
H(16B)	-1970(20)	4940(20)	4591(19)	60(7)
H(16C)	-1840(30)	3990(30)	3800(20)	66(8)

Table S10: Bond lengths [Å] and angles [°] for 2.

Table SIV: Dolla lengu	Is $[A]$ and angles $[]$ for \mathbf{Z} .		
Na(1)-O(5)	2.2854(14)	F(10)-Na(1)-C(15)	92.99(5)
Na(1)-O(1)	2.3083(13)	F(5)-Na(1)-C(15)	103.45(5)
Na(1)-O(6)	2.3496(14)	B(1)-Na(1)-C(15)	167.17(5)
Na(1)-O(2)	2.4824(13)	C(14)-Na(1)-C(15)	27.80(5)
Na(1)-F(13)	2.5224(14)	O(4)-B(1)-O(3)	110.49(12)
Na(1)-F(10)	2.6098(14)	O(4)-B(1)-O(2)	112.85(12)
Na(1)-F(5)	2.9160(14)	O(3)-B(1)-O(2)	111.09(12)
Na(1)-B(1)	3.000(2)	O(4)-B(1)-O(1)	110.41(12)
Na(1)-C(14)	3.1168(19)	O(3)-B(1)-O(1)	110.46(12)
Na(1)-C(15)	3.121(2)	O(2)-B(1)-O(1)	101.20(11)
B(1)-O(4)	1.4567(19)	O(4)-B(1)-Na(1)	140.07(10)
B(1)-O(3)	1.4636(19)	O(3)-B(1)-Na(1)	109.07(9)
B(1)-O(2)	1.4807(18)	O(2)-B(1)-Na(1)	55.53(7)
B(1)-O(1)	1.4913(18)	O(1)-B(1)-Na(1)	48.79(6)
O(1)-C(1)	1.3905(17)	C(1)-O(1)-B(1)	121.30(11)
O(2)-C(4)	1.3963(17)	C(1)-O(1)-Na(1)	133.69(9)
O(3)-C(7)	1.3834(18)	B(1)-O(1)-Na(1)	102.13(8)
O(4)-C(10)	1.3900(17)	C(4)-O(2)-B(1)	122.12(11)
O(5)-C(14)	1.422(2)	C(4)-O(2)-Na(1)	120.42(9)
O(5)-C(13)	1.426(2)	B(1)-O(2)-Na(1)	95.02(8)
O(6)-C(16)	1.424(2)	C(7)-O(3)-B(1)	123.51(11)
O(6)-C(15)	1.430(2)	C(10)-O(4)-B(1)	123.32(11)
F(1)-C(2)	1.3283(19)	C(14)-O(5)-C(13)	112.42(14)
F(2)-C(2)	1.337(2)	C(14)-O(5)-Na(1)	112.35(9)
F(3)-C(2)	1.3374(18)	C(13)-O(5)-Na(1)	127.75(11)
F(4)-C(3)	1.3350(19)	C(16)-O(6)-C(15)	111.30(13)
F(5)-C(3)	1.346(2)	C(16)-O(6)-Na(1)	126.52(12)
F(6)-C(3)	1.3334(18)	C(15)-O(6)-Na(1)	108.90(9)
F(7)-C(5)	1.331(2)	C(3)-F(5)-Na(1)	108.94(9)
F(8)-C(5)	1.335(2)	C(6)-F(10)-Na(1)	110.43(9)
F(9)-C(5)	1.335(2)	C(8)-F(13)-Na(1)	147.69(10)
F(10)-C(6)	1.344(2)	O(1)-C(1)-C(3)	108.31(12)
F(11)-C(6)	1.3299(19)	O(1)-C(1)-C(2)	109.31(12)
F(12)-C(6)	1.328(2)	C(3)-C(1)-C(2)	111.54(12)
F(13)-C(8)	1.3518(19)	F(1)-C(2)-F(3)	107.50(13)
F(14)-C(8)	1.329(2)	F(1)-C(2)-F(2)	107.29(13)
F(15)-C(8)	1.338(2)	F(3)-C(2)-F(2)	107.65(13)
F(16)-C(9)	1.333(2)	F(1)-C(2)-C(1)	110.58(13)
F(17)-C(9)	1.340(2)	F(3)-C(2)-C(1)	111.62(13)
F(18)-C(9)	1.332(2)	F(2)-C(2)-C(1)	111.98(13)

F(19)-C(11)	1.3342(19)	F(6)-C(3)-F(4)	107.59(13)
F(20)-C(11)	1.3408(19)	F(6)-C(3)-F(5)	107.14(13)
F(21)-C(11)	1.338(2)	F(4)-C(3)-F(5)	106.55(13)
F(22)-C(12)	1.3355(19)	F(6)-C(3)-C(1)	113.07(13)
F(23)-C(12)	1.334(2)	F(4)-C(3)-C(1)	110.56(13)
F(24)-C(12)	1.340(2)	F(5)-C(3)-C(1)	111.62(13)
C(1)-C(3)	1.526(2)	O(2)-C(4)-C(5)	106.64(13)
C(1)-C(2)	1.536(2)	O(2)-C(4)-C(6)	109.51(12)
C(4)-C(5)	1.524(2)	C(5)-C(4)-C(6)	112.34(13)
C(4)-C(6)	1.528(2)	F(7)-C(5)-F(8)	107.21(14)
C(7)-C(8)	1.527(2)	F(7)-C(5)-F(9)	107.57(14)
C(7)-C(9)	1.530(2)	F(8)-C(5)-F(9)	107.08(16)
C(10)-C(11)	1.526(2)	F(7)-C(5)-C(4)	112.52(15)
C(10)-C(12)	1.529(2)	F(8)-C(5)-C(4)	109.90(14)
C(14)-C(15)	1.498(2)	F(9)-C(5)-C(4)	112.28(14)
		F(12)-C(6)-F(11)	107.95(14)
O(5)-Na(1)-O(1)	120.94(5)	F(12)-C(6)-F(10)	106.71(14)
O(5)-Na(1)-O(6)	73.22(5)	F(11)-C(6)-F(10)	107.31(13)
O(1)-Na(1)-O(6)	151.21(5)	F(12)-C(6)-C(4)	110.20(13)
O(5)-Na(1)-O(2)	137.74(5)	F(11)-C(6)-C(4)	112.70(14)
O(1)-Na(1)-O(2)	57.15(4)	F(10)-C(6)-C(4)	111.72(13)
O(6)-Na(1)-O(2)	131.30(5)	O(3)-C(7)-C(8)	110.86(13)
O(5)-Na(1)-F(13)	146.06(5)	O(3)-C(7)-C(9)	107.91(13)
O(1)-Na(1)-F(13)	77.92(5)	C(8)-C(7)-C(9)	110.76(13)
O(6)-Na(1)-F(13)	78.70(5)	F(14)-C(8)-F(15)	107.70(13)
O(2)-Na(1)-F(13)	75.82(4)	F(14)-C(8)-F(13)	106.75(14)
O(5)-Na(1)-F(10)	74.44(5)	F(15)-C(8)-F(13)	106.13(13)
O(1)-Na(1)-F(10)	97.30(5)	F(14)-C(8)-C(7)	113.24(14)
O(6)-Na(1)-F(10)	111.11(5)	F(15)-C(8)-C(7)	112.48(15)
O(2)-Na(1)-F(10)	64.81(4)	F(13)-C(8)-C(7)	110.14(12)
F(13)-Na(1)-F(10)	134.84(4)	F(18)-C(9)-F(16)	107.12(15)
O(5)-Na(1)-F(5)	88.08(5)	F(18)-C(9)-F(17)	107.43(14)
O(1)-Na(1)-F(5)	59.92(4)	F(16)-C(9)-F(17)	107.37(13)
O(6)-Na(1)-F(5)	98.67(4)	F(18)-C(9)-C(7)	110.41(13)
O(2)-Na(1)-F(5)	115.12(4)	F(16)-C(9)-C(7)	112.50(14)
F(13)-Na(1)-F(5)	77.58(4)	F(17)-C(9)-C(7)	111.75(15)
F(10)-Na(1)-F(5)	138.59(5)	O(4)-C(10)-C(11)	107.46(12)
O(5)-Na(1)-B(1)	141.67(5)	O(4)-C(10)-C(12)	110.98(12)
O(1)-Na(1)-B(1)	29.08(4)	C(11)-C(10)-C(12)	111.64(13)
O(6)-Na(1)-B(1)	145.12(5)	F(19)-C(11)-F(21)	107.14(14)
O(2)-Na(1)-B(1)	29.45(4)	F(19)-C(11)-F(20)	107.35(13)

F(13)-Na(1)-B(1)	68.41(5)	F(21)-C(11)-F(20)	106.89(13)
F(10)-Na(1)-B(1)	85.70(5)	F(19)-C(11)-C(10)	113.18(13)
F(5)-Na(1)-B(1)	85.68(4)	F(21)-C(11)-C(10)	110.13(13)
O(5)-Na(1)-C(14)	24.95(4)	F(20)-C(11)-C(10)	111.83(14)
O(1)-Na(1)-C(14)	137.38(5)	F(23)-C(12)-F(22)	107.56(14)
O(6)-Na(1)-C(14)	49.21(5)	F(23)-C(12)-F(24)	106.71(14)
O(2)-Na(1)-C(14)	155.77(5)	F(22)-C(12)-F(24)	107.29(14)
F(13)-Na(1)-C(14)	122.18(5)	F(23)-C(12)-C(10)	113.47(14)
F(10)-Na(1)-C(14)	91.81(5)	F(22)-C(12)-C(10)	111.48(13)
F(5)-Na(1)-C(14)	86.32(5)	F(24)-C(12)-C(10)	110.04(13)
B(1)-Na(1)-C(14)	164.81(5)	O(5)-C(14)-C(15)	108.45(13)
O(5)-Na(1)-C(15)	49.05(5)	O(5)-C(14)-Na(1)	42.70(7)
O(1)-Na(1)-C(15)	162.70(5)	C(15)-C(14)-Na(1)	76.26(9)
O(6)-Na(1)-C(15)	25.68(4)	O(6)-C(15)-C(14)	108.77(13)
O(2)-Na(1)-C(15)	140.15(5)	O(6)-C(15)-Na(1)	45.42(7)
F(13)-Na(1)-C(15)	104.37(5)	C(14)-C(15)-Na(1)	75.95(9)

7 References

- 1. H. S. Lee, X. Q. Yang, C. L. Xiang, J. McBreen and L. S. Choi, *J. Electrochem. Soc.*, 1998, **145**, 2813–2818.
- 2. R. E. A. Dear, W. B. Fox, R. J. Fredericks, E. E. Gilbert and D. K. Huggins, *Inorg. Chem.*, 1970, **9**, 2590–2591.
- 3. J. A. Cradlebaugh, L. Zhang, G. R. Shelton, G. Litwinienko, B. E. Smart, K. U. Ingold, W. R. Dolbier and Jr., *Org. Biomol. Chem.*, 2004, **2**, 2083–2086.
- 4. H. W. Roesky and D. K. Kennepohl, *Experiments in Green and Sustainable Chemistry*, 21st Section, Wiley–VCH, Weinheim, 2009.