Supplementary Information

Synthesis and complexes of an N_4 Schiff-base macrocycle derived from 2,2'-iminobisbenzaldehyde

Rajni Sanyal, Scott A. Cameron and Sally Brooker*^[a]

^[a]Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand. Fax: +64 3 479 7906. Email: sbrooker@chemistry.otago.ac.nz

Figure S1. ¹H NMR and ¹³C NMR Spectra of HL in CDCl₃

170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40

Figure S2. ¹H NMR and ¹³C NMR Spectra of [ZnL(py)](BF₄) 2 (CD₃)₂CO

Figure S4. ¹H NMR and ¹³C NMR Spectra of [CoL(NCS)₂]•0.3py 7 in CD₃CN

Figure S5. Cyclic voltammograms of complexes *before* conducting controlled potentiostatic coulometry experiment over the potential range of interest for, from bottom to top: $[Zn^{II}L(py)](BF_4)$ **2** (brown line), $[Cu^{II}L](BF_4) \cdot H_2O$ **3** (green line), $[Ni^{II}L](BF_4) \cdot H_2O$ **4** (purple line) and $[Co^{II}L](BF_4) \cdot H_2O$ **5** (blue line) as 1 mmol L⁻¹ solutions in MeCN (100 mV.s⁻¹, 0.1 mol.L⁻¹ NBu₄PF₆, platinum electrode, versus 0.01 mol.L⁻¹ AgNO₃/Ag).

Electrochemical study of [ZnLPy](BF₄) in MeCN

Figure S6. Cyclic voltammogram of $[ZnL(py)](BF_4)$ **before** carrying out a controlled potential coulometry experiment at +0.48 V as 1mmol L⁻¹ solutions in MeCN (200 mV.s⁻¹, 0.1 mol.L⁻¹ NEt₄PF₆, platinum electrode, versus 0.01 mol.L⁻¹ AgNO₃-Ag).

1. First bulk electrolysis experiment, at +0.48 V

Mass of $[ZnLPy](BF_4)$ used = 5.2346 mg

Concentration of $[\text{ZnLPy}](\text{BF}_4) = \frac{0.0062346 \text{ g}}{0.010 \text{ L x } 622.6607 \text{ g mol}^{-3}} = 1.002 \text{ x } 10^{-5} \text{ mol } \text{L}^{-1}$

The expected number of electrons to be transferred provided that this particular process was a one electron process was calculated to be 0.97 coulombs. This was calculated as follows.

No. of moles of $[ZnLPy](BF_4) = Concentration of <math>[ZnLPy](BF_4) \times Volume$ = 0.001002 Mol L⁻¹ x 0.010 L = 1.002 x 10⁻⁵ mol

No. of electrons transferred = $n_e x$ No. of moles of [ZnLPy](BF₄) x Faraday's constant = 1 x 1.002 x 10⁻⁵ mol x 96500 C mol⁻¹ = 0.967 C if one electron process

Figure S7. Controlled potentiostatic coulometry experiment conducted at +0.48 V led to 1.16 coulombs of electrons transferred which corresponds to 1.2 electron equivalents per complex.

Second run at +0.41 V

A controlled potentiostatic coulometry experiment was also carried out, on a fresh sample, at +0.41 V, about 60 mV less than the previous potential used.

Mass of $[ZnLPy](BF_4)$ used = 5.2305 mg

Concentration of $[\text{ZnLPy}](\text{BF}_4) = \frac{0.0062306 \ g}{0.010 \ L \times 522.6607 \ g \ mol^{-4}} = 1.001 \ \text{x} \ 10^{-5} \ \text{mol} \ \text{L}^{-1}$

No. of moles of $[ZnLPy](BF_4) = Concentration of <math>[ZnLPy](BF_4) \times Volume$ = 0.001001 Mol L⁻¹ x 0.010 L = 1.001 x 10⁻⁵ mol

No. of electrons transferred = $n_e x$ No. of moles of [ZnLPy](BF₄) x Faraday's constant = 1 x 1.001 x 10⁻⁵ mol x 96500 C mol⁻¹ = 0.966 C

Figure S8. Controlled potentiostatic coulometry experiment conducted at +0.41 V led to 1.2 coulombs of electrons transferred which corresponds to 1.2 electron equivalents per complex.

Figure S9. Cyclic voltammogram of $[ZnL(py)](BF_4)$ (oxidation process) at different scan rates $(mV.s^{-1})$ before conducting a controlled coulometry experiment.

Figure S10. Cyclic voltammogram of $[ZnL(py)](BF_4)$ (oxidation process) at different scan rates $(mV.s^{-1})$ before conducting a controlled coulometry experiment.

Figure S11. Cyclic voltammogram of $[ZnL(py)](BF_4)$ after carrying out a controlled potential coulometry experiment at 0.47 V as 1 mmol.L⁻¹ solutions in MeCN (200 mV.s⁻¹, 0.1 mol.L⁻¹ NEt₄PF₆, platinum electrode, versus 0.01 mol.L⁻¹ AgNO₃-Ag).

Figure S12. Cyclic voltammogram of [ZnL(py)](BF₄) (oxidation process) at different scan rates (mVs⁻¹) **after** conducting a controlled coulometry experiment.

Figure S13. Cyclic voltammogram, from the bottom of $[ZnLPy](BF_4)$ before (blue) and after (red) carrying out a controlled potential coulometry experiment at 0.47 V as 1mmol L⁻¹ solutions in MeCN (200 mV.s⁻¹, 0.1 M NEt₄PF₆, platinum electrode, versus 0.01 M AgNO₃/Ag).

Electrochemical study of [CuL](BF₄)•H₂O in MeCN

Potential / V

Figure S14. Cyclic voltammogram of $[CuL](BF_4)$ ·H₂O **before** carrying out a controlled potential coulometry experiment at +0.61 V as 1mmol L⁻¹ solutions in MeCN (200 mV.s⁻¹, 0.1 M NEt₄PF₆, platinum electrode, versus 0.01 M AgNO₃-Ag).

Mass of $[CuL](BF_4) \cdot H_2O$ used = 5.2346 mg

Concentration of $[CuL](BF_4) \cdot H_2O = \frac{0.0062846 g}{0.010 L \times 522.6607 g mol^{-5}} = 1.002 \times 10^{-5} \text{ mol } L^{-1}$ The expected number of electrons to be transferred provided that this particular process was a one electron process was calculated to be 0.97 coulombs. This was calculated from the following equation.

No. of moles of $[CuL](BF_4) \cdot H_2O = Concentration of <math>[CuL](BF_4) \cdot H_2O \times Volume$ = 0.00100 Mol L⁻¹ x 0.010 L = 0.00001 mol

No. of electrons transferred = $n_e x$ No. of moles of [CuL](BF₄)•H₂O x Faraday's constant = 1 x 0.00001 mol x 96500 C mol⁻¹ = 0.966 C if one electron process

Figure S15. Controlled potentiostatic coulometry experiment conducted at +0.61 V led to 0.92 coulombs of electrons transferred which corresponds to 0.95 electron equivalents per complex

Figure S16. Cyclic voltammogram of $[CuL](BF_4) \cdot H_2O$ (oxidation process) at different scan rates $(mV.s^{-1})$ before conducting a controlled coulometry experiment.

Figure S17. Cyclic voltammogram of $[CuL](BF_4)$ - H_2O after carrying out a controlled potential coulometry experiment at +0.61 V as 1 mmol.L⁻¹ solutions in MeCN (200 mV.s⁻¹, 0.1 mol.L⁻¹ NEt₄PF₆, platinum electrode, versus 0.01 mol.L⁻¹ AgNO₃-Ag).

Figure S18. Cyclic voltammogram of $[CuL](BF_4) \cdot H_2O$ (oxidation process) at different scan rates (mV.s⁻¹) **after** conducting a controlled coulometry experiment.

Figure S19. Cyclic voltammogram, from the bottom of $[CuL](BF_4)$ •H₂O **before** (purple) and **after** (red) carrying out a controlled potential coulometry experiment at 0.61 V as 1 mmol.L⁻¹ solutions in MeCN (200 mV.s⁻¹, 0.1 mol.L⁻¹ NEt₄PF₆, platinum electrode, versus 0.01 mol.L⁻¹ AgNO₃/Ag).

Electrochemical study of [NiL](BF₄)•H₂O in MeCN

Potential / V

Figure S20. Cyclic voltammogram of $[NiL](BF_4) \cdot H_2O$ before carrying out a controlled potential coulometry experiment at +0.71 V as 1 mmol.L⁻¹ solutions in MeCN (200 mV.s⁻¹, 0.1 mol.L⁻¹ NEt₄PF₆, platinum electrode, versus 0.01 mol.L⁻¹ AgNO₃-Ag).

1. First run at +0.71 V

Mass of $[NiL](BF_4) \cdot H_2O$ used = 4.500 mg

Concentration of [NiL](BF₄)•H₂O = $\frac{0.004500 \, g}{0.010 \, L \times 436.8693 \, g \, mol^{-1}} = 1.030 \, \text{x} \, 10^{-3} \, \text{mol} \, \text{L}^{-1}$

The expected number of electrons to be transferred provided that this particular process was a one electron process was 0.97 coulombs. This was calculated as follows.

No. of moles of $[NiL](BF_4) \cdot H_2O = Concentration of [NiL](BF_4) \cdot H_2O \times Volume$ $= 0.00103 \text{ mol } \text{L}^{-1} \text{ x } 0.010 \text{ L}$ = 0.00001 mol= $n_e x$ No. of moles of [NiL](BF₄)•H₂O x Faraday's constant No. of electrons transferred $= 1 \ge 0.00001 \mod 10^{-1} = 1 \ge 0.00001 \mod 10^{-1}$ = 0.966 C if one electron process 1.6 1.4 1.2 Charge / mC 1 0.8 0.6 0.4 0.2 0 0 1000 2000 3000 4000 Time / s

Figure S21. Controlled potentiostatic coulometry experiment conducted at +0.71 V led to 1.50 coulombs of electrons transferred which corresponds to 1.6 electron equivalents per complex.

Second run at +0.65 V

A controlled potentiostatic coulometry experiment was also carried out on a fresh sample at +0.65 V, about 60 mV less than the previous potential used.

Mass of $[NiL](BF_4) \cdot H_2O$ used = 4.5417 mg

Concentration of [NiL](BF₄)•H₂O = $\frac{0.0045417 \text{ g}}{0.010 \text{ L} \times 436.8693 \text{ g} \text{ mol}^{-1}}$ = 1.046 x 10⁻³ mol L⁻¹ No. of moles of [NiL](BF₄)•H₂O = Concentration of [NiL](BF₄)•H₂O x Volume = 0.001046 Mol L⁻¹ x 0.010 L = 1.05 x 10⁻⁵ mol No. of electrons transferred = n_e x No. of moles of [NiL](BF₄)•H₂O x Faraday's constant = 1 x 1.05 x 10⁻⁵ mol x 96500 C mol⁻¹ = 1.013 C if one electron process

Figure S22. Controlled potentiostatic coulometry experiment conducted at +0.65 V led to 1.85 coulombs of electrons transferred which corresponds to 1.8 electron equivalents per complex.

Figure S23. Cyclic voltammogram of $[NiL](BF_4) \cdot H_2O$ (oxidation process) at different scan rates $(mV.s^{-1})$ before conducting a controlled coulometry experiment.

Figure S24. Cyclic voltammogram of $[NiL](BF_4) \cdot H_2O$ (oxidation process) at different scan rates $(mV.s^{-1})$ before conducting a controlled coulometry experiment.

Figure S25. Cyclic voltammogram of [NiL](BF₄)•H₂O **after** carrying out a controlled potential coulometry experiment at +0.71 V as 1 mmol.L⁻¹ solutions in MeCN (200 mV.s⁻¹, 0.1 mol.L⁻¹ NEt₄PF₆, platinum electrode, versus 0.01 mol.L⁻¹ AgNO₃-Ag).

Figure S26. Cyclic voltammogram of [NiL](BF₄)•H₂O (oxidation process) at different scan rates (mVs⁻¹) **after** conducting a controlled coulometry experiment.

Figure S27. Cyclic voltammogram, from the bottom of $[NiL](BF_4)$ ·H₂O **before** (red) and after (green) carrying out a controlled potential coulometry experiment at 0.61 V as 1 mmol.L⁻¹ solutions in MeCN (200 mV.s⁻¹, 0.1 mol.L⁻¹ NEt₄PF₆, platinum electrode, versus 0.01 mol.L⁻¹ AgNO₃-Ag).

Figure S28. Cyclic voltammograms of the three BF_4 complexes from the bottom $[ZnL(py)](BF_4)$ **2** (blue), $[CuL](BF_4) \cdot H_2O$ **3** (green) and $[NiL](BF_4) \cdot H_2O$ **4** (red) **after** carrying out a controlled coulometry experiment as 1 mmol.L⁻¹ solutions in MeCN (200 mV.s⁻¹, 0.1 mol.L⁻¹ NEt₄PF₆, platinum electrode, versus 0.01 mol.L⁻¹ AgNO₃/Ag). All of these complexes show the emergence of a reversible redox process in close proximity to 0 V.

Figure S29. Cyclic voltammograms of $[Co^{II}L](BF_4) \cdot H_2O$ (oxidation process) at different scan rate $(mV.s^{-1})$.

Figure S30. Cyclic voltammograms of complexes *after* a controlled potential coulometry experiment at the appropriate redox potential (Table 4), over the potential range of interest for, from bottom to top: $[Zn^{II}LPy](BF_4)$ 2 (blue line), $[Cu^{II}L](BF_4)$ ·H₂O 3 (red line) and $[Ni^{II}L](BF_4)$ ·H₂O 4 (pale blue line) as 1 mmol.L⁻¹ solutions in MeCN (200 mV.s⁻¹, 0.1 mol.L⁻¹ NBu₄PF₆, platinum electrode, versus 0.01 mol.L⁻¹ AgNO₃/Ag).

	Epc	Epa	ΔΕ
25	+0.32	+0.30	0.02
50	+0.35	+0.31	0.04
100	+0.36	+0.31	0.05
200	+0.37	+0.32	0.05
300	+0.38	+0.32	0.06
400	+0.39	+0.33	0.06

Table S1. Scan rate study of the process at approximately +0.37 V, for $[ZnL(py)](BF_4)$, from 0 to +0.37 to 0 V, **before** conducting a controlled coulometry experiment.

Table S2. Scan rate study of the process at approximately +0.82 V, for $[ZnL(py)](BF_4)$), from 0 to +0.82 to 0 V, **before** conducting a controlled coulometry experiment.

	Epc	Epa	ΔΕ
25	+0.79	+0.79	0.00
50	+0.80	+0.78	0.02
100	+0.81	+0.78	0.03
200	+0.82	+0.77	0.05
300	+0.83	+0.78	0.05
400	+0.85	+0.78	0.07

Table S3. Scan rate study of the process at approximately +0.18 V, for $[ZnL(py)](BF_4)$, from 0 to +0.18 to 0 V, **after** conducting a controlled coulometry experiment at +0.48 V which transferred 1.2 é equivalents per complex.

	Epc	Ера	ΔΕ
25	+0.18	+0.13	0.05
50	+0.19	+0.13	0.06
100	+0.20	+0.13	0.07
200	+0.20	+0.12	0.08
300	+0.21	+0.11	0.10
400	+0.21	+0.11	0.10

Table S4. Scan rate study of the process at approximately +0.50 V, for $[CuL)](BF_4)$ •H₂O, from 0 to +0.50 to 0 V, **before** conducting a controlled coulometry experiment.

	Epc	Epa	ΔΕ
25	+0.50	+0.44	0.06
50	+0.50	+0.44	0.06
100	+0.51	+0.45	0.06
200	+0.50	+0.45	0.05
300	+0.50	+0.44	0.06
400	+0.50	+0.44	0.06

equivalents per complex.					
Epc	Epa	ΔΕ			
+0.36	+0.25	0.11			
+0.36	+0.25	0.11			
+0.37	+0.24	0.13			
+0.37	+0.24	0.13			
+0.38	+0.24	0.14			
+0.39	+0.23	0.16			
	Epc +0.36 +0.36 +0.37 +0.37 +0.37 +0.38 +0.39	Epc Epa +0.36 +0.25 +0.36 +0.25 +0.37 +0.24 +0.38 +0.24 +0.39 +0.23			

Table S5. Scan rate study of the process at approximately +0.36 V, for [CuL)](BF₄) $+H_2$ O, from 0 to +0.36 to 0 V, **after** conducting a controlled coulometry experiment at +0.61 V which transferred 1 é equivalents per complex.

Table S6. Scan rate study of the process at approximately +0.59 V, for $[NiL)](BF_4)$ •H₂O, from 0 to +0.59 to 0 V, **before** conducting a controlled coulometry experiment.

	Epc	Epa	ΔΕ
25	+0.59	+0.54	0.05
50	+0.58	+0.54	0.04
100	+0.58	+0.54	0.04
200	+0.59	+0.54	0.05
300	+0.59	+0.53	0.05
400	+0.59	+0.53	0.06

Table S7. Scan rate study of the process at approximately +1.37 V, for [NiL)](BF₄)•H₂O, from 0 to +1.37 to 0 V, **before** conducting a controlled coulometry experiment.

	Epc	Epa	ΔE
25	+1.30	+1.28	0.02
50	+1.32	+1.30	0.02
100	+1.33	+1.30	0.03
200	+1.37	+1.30	0.07
300	+1.36	+1.25	0.11
400	+1.35	+1.23	0.12

Table S8. Scan rate study of the process at approximately +0.48 V, for [NiL)](BF ₄)•H ₂ O, from 0 to
+0.50 to 0 V, after conducting a controlled coulometry experiment at +0.71 V which transferred 1.6 é
equivalents per complex.

	Epc	Ера	ΔΕ
25	+0.50	+0.39	0.11
50	+0.50	+0.38	0.12
100	+0.50	+0.38	0.12
200	+0.50	+0.39	0.11
300	+0.50	+0.38	0.12
400	+0.50	+0.38	0.12

Table S9. Summary and comparison of the frequency and structural features of combinations of different chelate ring sizes in 4-coordinate Cu^{II} and Ni^{II} complexes and 6-coordinate Fe^{III} complexes of 12- to 16-membered N_4 macrocycles. Data obtained from searches of the CSD (version 5.31), analysed by Vista.

Complex	6666	6665	6655	6565	6555	5555
Any 3d	All-2283	All- 272	All-104	All-1871	All-79	All-310
· ·	Cu-160	Cu-42	Cu-3	Cu-132	Cu-5	Cu
	Ni-355	Ni-37	Ni-15	Ni-292	Ni-12	Ni-6
	Fe-321	Fe-1	Fe-3	Fe-65	Fe	Fe-16
Any 3d NOT	All-183	All-150	All-104	All-1827	All-78	All-308
porphyrin/corr	Cu-13	Cu-2	Cu-3	Cu-77	Cu-1	Cu-0
in	Ni-23	Ni-8	Ni-15	Ni-162	Ni-5	Ni-2
	Fe-0	Fe-0	Fe-1	Fe-4	Fe-0	Fe-0
M-N(66) range	Cu 1.93-2.08	Cu 1.92-2.06	Cu 1.93-1.97			
(average) [Å]	(1.99)	(1.95)	(1.95)			
	Ni 1.85-1.97	Ni 1.88-1.98	Ni 1.93-2.00			
	(1.89)	(1.91)	(1.97)			
	Fe-none	Fe-none	Fe-2.15			
M-N(65) range		Cu 1.91-2.06	Cu 1.99-2.05	Cu 1.86-2.16	Cu 1.81-2.01	
(average) [Å]		(1.96)	(2.03)	(1.98)	(1.95)	
		Ni 1.85-1.99	Ni 1.86-1.99	Ni 1.80-2.10	Ni 1.85-1.90	
		(1.90)	(1.92)	(1.94)	(1.88)	
		Fe-none	Fe 2.11-2.15	Fe 1.95-2.03	Fe-none	
			(2.14)	(1.97)	~	~
M-N(55) range			Cu 1.88-1.92		Cu 1.84-1.99	Cu-none
(average) [A]			(1.90)		(1.92)	
			N1 1.82-1.90		N1 1.86-2.01	N1 1.87-1.94
			(1.85)		(1.92)	(1.89)
~		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Fe 2.11		Fe-none	Fe-none
Cis N-M-N	Cu 83.95-98.66	Cu 85.95-100.67	Cu 98.14-99.68	Cu 87.76-	Cu 86.18-89.47	
range within	(90.48)	(92.73)	(98.78)	103.18 (95.38)	(80.95)	
00, 05 anu 55 chalata	NI 80.98-95.78	(01 74)	INI 95.00-98.30	(03.46)	(80.10)	
rings(average)	(90.00) Fe-none	(91.74) Fe-none	(90.30) Fe-80.05	(95.40) Fe-00 42-00 51	(69.19) Fe-none	
[°]	I C-none	I C-none	10-07.75	(94 31)	i c-none	
Cis N-M-N		Cu 81 25-87 76	Cu 79 40-82 72	Cu 75 82-92 23	Cu 88 95-93 57	Cu-none
range within		(85.28)	(81.21)	(85.12)	(90.83)	Cu none
66, 65 and 55		Ni 82.73-89.89	Ni 80.37-86.60	Ni 82.05-90.65	Ni 86.40-93.36	Ni 86.74-91.60
chelate rings		(89.46)	(83.49)	(86.33)	(90.23)	(89.34)
(average) [°]		Fe-none	Fe-77.26	Fe-80.49-88.07	Fe-none	Fe-none
				(84.77)		
Trans N1-M-	Cu 146.61-	Cu 160.03-	Cu 157.31-	Cu 150.06-	169.79	Cu-none
N4 range	178.40 (170.77)	165.15 (163.49)	162.89 (160.18)	180.00 (176.18)		
(average) [°]	Ni 155.84-	Ni 163.42-	Ni 171.49-	Ni 160.45-	Ni 167.16-	Ni 161.83-
	179.46 (174.69)	172.99 (170.11)	179.52 (176.31)	180.00 (177.15)	176.84 (173.14)	170.77 (167.79)
	Fe-none	Fe-none	Fe 154.49	Fe 97-180 (166)	Fe-none	Fe-none
Trans N3-M-	Cu 135.02-	Cu 160.03-	Cu 170.45-	Cu 155.68-	Cu-169.79	Cu-none
N2 range	178.32 (168.42)	172.09 (169.07)	179.27 (175.77)	180.00 (175.97)		
(average) [°]	Ni 163.62-	Ni 162.90-	Ni 161.25-	Ni 162.40-	Ni 165.94-	Ni 162.98-
	179.46 (174.90)	172.99 (167.96)	169.45 (163.58)	180.00 (176.90)	176.84 (172.18)	167.37 (165.91)
	Fe-none	Fe-none	Fe 87.11	Fe 172.39-180	Fe-none	Fe-none
			1	(179)		

Figure S31. Summary of the *cis* (in diagram) and *trans* (in table) angles within different chelate ring sizes in 4-coordinate Cu^{II} complexes of 12- to 16- membered N₄ macrocycles. Data obtained from searches, with all bonds as any bond type, of the CSD (version 5.31), analyzed by Vista.

Hits	13	2	3	77	1	0
N1-Cu-N4	147 – 178*	160 - 165	157 - 163	150 - 180	169.79	
(average) [°]	(171)	(163)	(160)	(176)		
N3-Cu-N2	135 - 178*	160 - 173	170 - 179	155 - 180	169.79	
(average) [°]	(168)	(169)	(176)	(176)		
N3-Cu-N2 (average) [°]	$135 - 178^{*}$ (168)	160 – 173 (169)	1/0 – 1/9 (176)	155 – 180 (176)	169.79	

*A few them are outliers due to the buckled nature of the structures.

Figure S32. Summary of the *cis* (in diagram) and *trans* (in table) angles within different chelate ring sizes in 4-coordinate Ni^{II} complexes of 12- to 16- membered N₄ macrocycles. Data obtained from searches, with all bonds as any bond type, of the CSD (version 5.31), analyzed by Vista.

Hits	23	8	15	162	5	2
N1-Ni-N4	156 - 180*	163 - 173	171 - 180	160 - 180	167 – 177	162 - 171
(average) [°]	(175)	(170)	(176)	(177)	(173)	(168)
N3-Ni-N2	164 – 179	162 - 173	161 – 169	162 - 180	166 – 177	163 - 167
(average) [°]	(175)	(168)	(164)	(177)	(172)	(166)

*A few them are outliers due to the buckled nature of the structures.

Figure S33. Summary of the *cis* and *trans* angles within different chelate ring sizes in 6-coordinate Fe^{II} complexes of 12- to 16- membered N₄ macrocycles. Data obtained from searches, with all bonds as any bond type, of the CSD (version 5.31), analyzed by Vista.

Hits	0	0	1	4	0	0
N1-Fe-N4			154.49 °	97 – 180 (166)		
(average) [°]						
N3-Fe-N2 (average) [°]			87.11 °	172 – 180 (179)		

Figure S34. Summary of the bond lengths of different chelate ring sizes in 4-coordinate Cu^{II} complexes of 12- to 16- membered N₄ macrocycles. Data obtained from searches as any bond type of the CSD (version 5.31) and analyzed by Vista.

Hits	13	2	3	77	1	0
Cu-N 66 [Å]	1.93 - 2.08	1.92 - 2.06	1.93 - 1.97			
	(1.99)	(1.95)	(1.95)			
Cu-N 65 [Å]		1.91 - 2.06	1.99 - 2.05	1.86 - 2.16	1.81 - 2.01	
		(1.96)	(2.03)	(1.98)	(1.95)	
Cu-N 55 [Å]			1.88 - 1.92		1.84 – 1.99	
			(1.90)		(1.92)	

Figure S35. Summary of the bond lengths of different chelate ring sizes in 4-coordinate Ni^{II} complexes of 12- to 16- membered N_4 macrocycles. Data obtained from searches as any bond type of the CSD (version 5.31) and analyzed by Vista.

Hits	23	8	15	162	5	2
Ni-N 66 [Å]	1.85 – 1.97 (1.89)	1.88 – 1.98 (1.91)	1.93 – 2.00 (1.97)			
Ni-N 65 [Å]		1.85 – 1.99 (1.90)	1.86 – 1.99 (1.92)	1.80 – 2.10 (1.94)	1.85 - 1.90 (1.88)	
Ni-N 55 [Å]			1.82 - 1.90 (1.85)		1.86 - 2.01 (1.92)	1.87 – 1.94 (1.89)

Figure S36. Summary of the bond lengths of different chelate ring sizes in 6-coordinate Fe^{III} complexes of 12- to 16- membered N₄ macrocycles. Data obtained from searches as any bond type of the CSD (version 5.31) and analyzed by Vista.

Hits	0	0	1	4	0	0
Fe-N 66 [Å]			2.15			
Fe-N 65 [Å]			2.11 – 2.15 (2.14)	1.95 – 2.03 (1.97)		
Fe-N 55 [Å]			2.11			

CCDC Codes for 4-	R groups/Structure	Counter	References in
coordinate Ni ^{II}		ion	paper
CEQVEA		Ι	1
DOCDUU	NH-Ni-N NH-Ni-NH	ClO ₄	2
DOCVEW	$R_1 = H$ $R_2 = R_3 = CH_3$	ClO ₄	3
DOGCOR		ClO ₄	4
EFAHOJ	$R_1 = R_2 = R_3 = H$	ClO ₄	5
FEJMOW	$R_1 = H$ $R_2 = R_3 = CH_3$	ClO ₄	6
GEWPUT	$\overline{R_1 = R_2} = \overline{R_3} = \overline{CH_3}$	ClO ₄	7
IBOKUG	$R_1 = R_2 = H$ $R_3 = Ph$ CH_3	BF ₄	8
MAZNIP	$R_1 = CH_3$ $R_2 = H$ $R_3 = H$	ClO ₄	9
OGIRIG	$R_1 = CH3$ $R_2 = H$ Et $R_3 = Et$	ClO ₄	10
OGIROM	$R_1 = CH_3$ $R_2 = H$ $Et \qquad \bigoplus \\ NH$ $R_3 = Et$	ClO ₄	10
OGIRUS	$R_1 = CH_3$ $R_2 = H$ $R_3 = HOOC$	ClO ₄	10
REDYII	$R_1 = R_2 = H$ $R_3 = CH_3$	ClO ₄	11
TUWQUX	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{H}$	ClO ₄	12
	R3 = H		

Table S10 Structures of all 4-coordinate Ni^{II} complexes of N_4 macrocycles with 6655 chelate rings in the CSD. See the following page for the general structure of these complexes (including R groups).

VAYGAD	H ₃ C N-Ni-N-(CH ₂) ₄ -N-Ni-N	ClO ₄	13

General structure of the dication in all of the above 4-coordinate Ni^{II} complexes (bonds "any type"):

Table S11 Structures of all 4-coordinate Cu^{II} complexes of N_4 macrocycles with 6655 chelate rings in the CSD.

CCDC Codes for 4-	Structure	Counter ion	References in
coordinate Cu ^{II}			the paper
INABOO		ClO ₄	14
INABUU		ClO ₄	14
REDYEE		PF ₆	11

Table S12 Structure of the only 6-coordinate Fe^{III} complex of an N₄ macrocycle with 6655 chelate rings in the CSD.

CCDC Code for 6- coordinate Fe ^{III}	Structure	Coordinated ion	Counter ion	Reference in the paper
FOLDIT	NH CI Fe NH	Cl	BF ₄	15

Figure S37. Infrared Spectra (KBr disks) from bottom to top: $[Zn^{II}L(py)](BF_4)$ 2 (navy blue line), $[Cu^{II}L](BF_4)\bullet H_2O$ 3 (black line), $[Ni^{II}L](BF_4)\bullet H_2O$ 4 (red line), $[Co^{II}L](BF_4)\bullet H_2O$ 5 (green line), Fe^{III}L(BF₄)₂•2H₂O•MeCN 6 (blue line), $[Co^{III}L(NCS)_2]\bullet 0.3py$ 7 (purple line), $[Fe^{III}L(NCS)_2]$ 8 (orange line).

Figure S38. Perspective view of the cation of $[Cu^{II}L](BF_4)$. Hydrogen atoms and tetrafluoroborate anion omitted for clarity.

Figure S39. UV-vis spectrum of $[Co^{II}L](BF_4) \cdot H_2O 5$ in MeCN, scaled so as to highlight the intense band tailing across the visible.

Table S13 Crystal structure determination details for the complexes $2\{[ZnL(py)](BF_4)\} \cdot py, [NiL](BF_4), [CuL](BF_4), and [FeL(NCS)_2] \cdot NO_2Me$

	$2(\Gamma Z_{\mu} \parallel \mathbf{D}_{\mu})$	$[C_{-}]$ $[D_{E}]$		
	$2\{[Zn LPy](BF_4)\}$ •	$[Cu L](BF_4)$	$[N1 L](BF_4)$	[Fe $L(NCS)_2$]
	ру			•NO ₂ Me
Emprical formula	$C_{51}H_{53}N_{11}B_2F_8Zn_2$	$C_{18}H_{19}N_4$ BF ₄ Cu	$C_{18}H_{19}N_4$ BF ₄ Ni	$C_{21}H_{22}N_7 O_2S_2Fe$
M_r	1124.40	441.72	436.89	524.43
Crystal system	Triclinic	Monoclinic	Monoclinic	Orthorhombic
Space group	P1 (twinned)	$P2_1/n$ (twinned)	Pn	$P2_12_12_1$
<i>a</i> [Å]	10.3702(16)	12.058(3)	7.2737(15)	8.894(8)
<i>b</i> [Å]	10.6201(18)	7.4261(18)	10.6471(18)	13.097(12)
<i>c</i> [Å]	12.6948(19)	19.403(4)	11.3778(15)	19.980(15)
α [°]	96.434(8)	90	90	90
β [°]	98.583(8)	94.651(15)	94.181(3)	90
γ [°]	116.065(7)	90	90	90
V[Å ³]	1216.8(3)	1731.6(7)	878.8(3)	2327(3)
Ζ	1	4	2	4
T [K]	90(2)	90(2)	90(2)	90(2)
$\rho_{\text{calcd.}}[\text{gcm}^{-3}]$	1.534	1.694	1.651	1.497
μ[mm ⁻¹]	1.067	1.314	1.156	0.861
F(000)	578	900	448	1084
Crystal size [mm]	0.20 x 0.20 x 0.04	0.30 x 0.08 x 0.08	0.20 x 0.10 x 0.08	0.27 x 0.12 x 0.11
Θ range for data collection	2.18 to 26.55	1.92 to 25.50	1.79 to 26.02	3.07 to 25.34
[°]				
Reflections collected	19349	4205	11732	19217
Independent reflections	9848	4318	3339	4241
R(int)	0.0595	0.0000	0.0574	0.1131
Max. and min. transmission	0.9586 and 0.8150	0.9021 and 0.6939	0.9132 and 0.6614	0.9112 and 0.5840
Data/ restraints/ parameters	9848 / 3 / 650	4318 / 0 / 254	3339 / 2 / 257	4241 / 0 / 299
$Goof(F^2)$	1.040	1.180	1.014	1.038
$R_1[I > 2\sigma(I)]$	0.0819	0.0767	0.0504	0.0652
wR_2 [all data]	0.2265	0.2081	0.1169	0.1484