Supporting Information For Studies of The Isomerization and Photophysical Properties of a Novel Ligand based on 2,2':6',2''-Terpyridine and its Complexes

Dongmei Li,^{a,b} Qiong Zhang,^a Peng Wang,^a Jieying Wu,^a Yuhe Kan,^c Yupeng Tian,^{*, a,d,e} Hongping Zhou,^{*,a} Jiaxiang Yang,^a Xutang Tao,^c and Minhua Jiang^d

^a Department of Chemistry, Anhui Province Key Laboratory of Functional Inorganic Material Chemistry, Anhui University, Hefei, 230039, P. R. China. Fax: +86-551-5107304; Tel: +86-551-5108151;

^b Henan Electric Power Research Institute, Zhengzhou, 450052, P. R. China.

^c Department of Chemistry, Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Teachers College, Huaian 223001 P. R. China. E-mail: yhkan@yahoo.cn.

^d State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.

^e State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 250100, P. R. China.

*Corresponding author: Yupeng Tian, E-mail: <u>yptian@ahu.edu.cn</u>; Hongping Zhou, E-mail: zhpzhp@263.net

Experimental section

Scheme S1. Synthetic routes of L.

Materials and Apparatus. All solvents were dried and purified by usual methods. Elemental analysis was performed with a Perkin–Elmer 240 analyzer. IR spectra (4000–400 cm⁻¹), as KBr pellets, were recorded on a Nicolet FT–IR 170 SX spectrophotometer. The mass spectra were obtained on a Micromass GCT–MS Spectrometer. ¹H and ¹³C NMR spectra were performed on Bruker 400 spectrometer with TMS as the internal standard. Thermogravimetric analysis (TGA) analysis was recorded with a Perkin–Elmer Pris–1 DMDA–V1 analyzer in an atmosphere of nitrogen at a heating rate of 10 °C·min⁻¹.

Optical measurements. The OPA spectra were measured on a UV–3600 Spectrophotometer. The OPEF measurements were performed using a F–2500 Fluorescence Spectrophotometer. The OPA and OPEF of L were measured in six solvents with the concentration of 1.0×10^{-5} M, while those of the complexes were measured in DMF dilute solutions (1.0×10^{-5} M). The third-order nonlinear optical (NLO) properties of all the compounds were studied by the Z-scan technique under an open aperture configuration with 532 nm laser pulses of 18 ns using DMF dilute solutions (1.5×10^{-4} M).

Fig. S1. ¹H NMR spectra of 6 measured immediately after its dissolution in d_6 -DMSO.

Fig. S2. ¹H NMR spectra of **6** measured 6 h later.

Fig. S3. ¹H NMR spectra of 2 measured immediately after its dissolution in d_6 -DMSO, inset: measured 6 h later.

Fig. S4 Fluorescence emission spectra of L in THF (a) and DMF (b), inset: the excitation wavelengths.

	1	•	2	4	-	1
	l	2	3	4	5	0
Formula	$C_{75}H_{58}Cl_4N_8O_8S_2Cd$	$C_{75}H_{58}Cl_4N_8O_8S_2Zn$	$C_{74}H_{56}Cl_2N_8O_8S_2Co$	$C_{75}H_{58}Cl_4N_8O_8S_2Cu$	$C_{75}H_{58}Cl_4N_8O_8S_2Mn$	$C_{37}H_{28}N_4I_2SCd$
Formula Wt	1517.65	1470.58	1379.23	1468.75	1460.16	926.89
Crystal Syst	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic	Monoclinic
Space group	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	C2/c
a (Å)	14.071(5)	13.9221(3)	11.0672(7)	13.8465(4)	14.0610(3)	19.953(5)
b (Å)	14.174(5)	14.1176(3)	15.9039(9)	14.0872(4)	14.1018(3)	13.943(5)
<i>c</i> (Å)	19.754(5)	20.0140(4)	19.6022(12)	20.0791(9)	19.9266(7)	27.347(5)
a (°)	97.391(5)	105.3220(10)	105.422(4)	105.473(3)	104.860(2)	90.000(5)
β (°)	103.966(5)	97.9320(10)	100.550(4)	98.160(3)	97.678(2)	106.629(5)
γ (°)	113.288(5)	112.5160(10)	94.827(4)	112.461(2)	112.8040(10)	90.000(5)
V [Å ³]	3399.1(19)	3376.01(12)	3237.5(3)	3355.0(2)	3397.99(16)	7290(3)
Z	2	2	2	2	4	4
$D_{\rm c} \left[{\rm g} \cdot {\rm cm}^{-3} \right]$	1.453	1.447	1.417	1.454	1.427	1.689
<i>F</i> (000)	1528	1516	1430	1514	1506	3584
Crystal Size (mm)	$0.50 \times 0.30 \times 0.20$	$0.34 \times 0.18 \times 0.10$	$0.44 \times 0.14 \times 0.05$	$0.40 \times 0.21 \times 0.06$	$0.50 \times 0.22 \times 0.20$	$0.16 \times 0.11 \times 0.04$
Temperature (K)	298(2)	296(2)	296(2)	296(2)	296(2)	298(2)
Radiation [Å] MoK α	0.71069	0.71073	0.71073	0.71073	0.71073	0.71069
N _{ref} , N _{par}	15486, 885	15371, 883	14843, 856	15439, 883	15562, 883	8087, 407
R_1, wR_2	0.0752, 0.1787	0.0667, 0.1865	0.0801, 0.1881	0.0716, 0.1896	0.0723, 0.2106	0.0878, 0.2230
Goodness-of-fit on F^2	1.008	1.046	1.016	1.050	1.060	1.025

Table S2. Selected bond lengths [Å] and angles [°] for 1–6.

1		2		3		4		5		6	
Bond	lengths										
Cd1–N1	2.286(5)	Zn1–N1	2.082(3)	Co1–N1	2.057(4)	Cu1–N1	2.234(4)	Mn1-N1	2.271(3)	Cd1–N2	2.331(10)
Cd1–N2	2.328(6)	Zn1-N2	2.185(3)	Co1–N2	1.891(4)	Cu1–N2	2.002(3)	Mn1-N2	2.188(3)	Cd1–N1	2.347(11)
Cd1–N3	2.350(6)	Zn1-N3	2.186(3)	Co1–N3	2.059(4)	Cu1–N3	2.240(4)	Mn1-N3	2.247(3)	Cd1–N3	2.379(11)
Cd1–N4	2.367(6)	Zn1-N4	2.216(3)	Co1–N4	2.103(4)	Cu1–N4	2.141(3)	Mn1-N4	2.248(3)	Cd1–I2	2.724(16)
Cd1–N5	2.289(5)	Zn1-N5	2.076(3)	Co1–N5	1.908(4)	Cu1–N5	1.959(3)	Mn1-N5	2.254(3)	Cd1–I1	2.741(17)
Cd1–N6	2.338(7)	Zn1–N6	2.201(3)	Co1–N6	2.108(4)	Cu1–N6	2.128(4)	Mn1–N6	2.194(3)		
Bond	angles										
N1-Cd1-N2	70.0(2)	N1-Zn1-N2	74.85(11)	N1-Co1-N2	79.92(15)	N1–Cu1–N2	76.62(13)	N1-Mn1-N2	71.80(10)	N2-Cd1-N1	69.2(3)
N5-Cd1-N6	70.4(2)	N5-Zn1-N6	106.28(11)	N5-Co1-N6	79.41(16)	N5-Cu1-N6	78.47(13)	N5-Mn1-N6	72.50(11)	N2-Cd1-N3	68.9(4)
N1-Cd1-N3	69.9(2)	N2-Zn1-N3	150.18(11)	N2-Co1-N3	80.12(15)	N2-Cu1-N3	76.11(12)	N2-Mn1-N3	72.50(10)	N1-Cd1-I2	99.3(3)
N5-Cd1-N4	69.9(2)	N5-Zn1-N4	74.94(11)	N5-Co1-N4	79.06(16)	N5-Cu1-N4	77.62(12)	N5-Mn1-N4	72.04(11)	N3-Cd1-I1	101.8(3)

Table S3. Non-covalent interactions in the choromophores 1-	-5.
---	-----

1		2		3		4		5	
H–bond									
O2…H36–C36	2.668	O1…H17–C17	2.426	O1…H46–C46	2.405	O1…H46–C46	2.520	O1…H73B-	2.630
								C73	
О3…Н9–С9	2.481	O1…H73–C73	2.526	O2…H36B−	2.608	O1…H49–C49	2.452	О2…Н9–С9	2.531
				C36					
O3…H12–C12	2.455	O3…H46–C46	2.446	O3…H49–C49	2.641	O1…H58–C58	2.709	O2…H12–C12	2.449
O3…H19–C19	2.463	O3…H49–C49	2.425	O5…H21–C21	2.476	O2…H12−C12	2.705	O2…H21–C21	2.525
O4…H38–C38	2.701	O3…H54–C54	2.569	О5…Н38–С38	2.493	O4…H1−C1	2.493	O3…H36B-	2.407
								C36	
O5…H36–C36	2.642	O4…H3−C3	2.652	O6…H18−C18	2.563	O5…H36B−	2.422	O3…H52–C52	2.510
						C36			
O5…H40–C40	2.690	O4…H36–C36	2.628	O6…H73−C73	2.575	O5…H38–C38	2.521	O5…H14–C14	2.706
O8…H3−C3	2.708	O6…H51–C51	2.702	O7…H14–C14	2.715	O7…H4–C4	2.419	O6…H41−C41	2.419
O8…H59B−C59	2.621	О7…Н9–С9	2.516	O7…H38–C38	2.664	O7…H7−C7	2.401	O6…H44–C44	2.474
O10····H1−C1	2.443	O7…H12–C12	2.439	O8…H12−C12	2.639	O7…H17−C17	2.563	O6…H54–C54	2.519
O10⋯H73B-	2.439	O7…H21−C21	2.626	O8…H13−C13	2.491	O8…H40−C40	2.711	O7…H15−C15	2.582
C73									
O11…H30–C30	2.613	O8…H52−C52	2.488			O8…H73B−	2.613		
						C73			
011…H33-C33	2.516	O8…H62−C62	2.709					Cl2SH52C52	2.922
О11…Н39-С39	2.476	O5…HISA–CIS	2.499	S1…H44A–C44	2.908	O2…H1S1–C1S	2.441	08HISACIS	2.640
C–H··· π									
a	2.810	а	2.756	а	2.818	a	2.777	а	2.772