Electronic Supplementary Information

Ruthenium nitrosyl complexes with 1,4,7-trithiacyclononane and 2,2'bipyridine (bpy) or 2-phenylazopyridine (pap) coligands. Electronic structure and reactivity aspects

Prinaka De,^a Somnath Maji,^a Abhishek Dutta Chowdhury,^a Shaikh M. Mobin,^a Tapan Kumar Mondal,^b Alexa Paretzki^c and Goutam Kumar Lahiri^{*a}

^a Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India, E-mail: lahiri@chem.iitb.ac.in

^b Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700032, India

^cInstitut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany

 Table S1
 Crystallographic
 data
 for
 $[Ru^{II}([9]aneS_3)(bpy)(NO_2)](ClO_4)$ $[\mathbf{3}](ClO_4)$,

 $[Ru^{II}([9]aneS_3)(pap)(Cl)](ClO_4)$ $[\mathbf{5}](ClO_4)$,
 $[Ru^{II}([9]aneS_3)(pap)(CH_3CN)](ClO_4)_2$ $[\mathbf{6}](ClO_4)_2$,

 $[Ru^{II}([9]aneS_3)(pap)(NO_2)](ClO_4)$ $[\mathbf{7}](ClO_4)$

	[3](ClO ₄)	[5](ClO ₄)	[6](ClO ₄) ₂	[7](ClO ₄)
Empirical	C ₁₆ H ₂₀ ClN ₃ O ₆ S ₃ Ru	$C_{17}H_{21}Cl_2N_3O_4S_3Ru$	$C_{19}H_{24}Cl_2N_4O_8S_3Ru$	$C_{17}H_{21}ClN_4O_6S_3Ru$
formula	- 10 20	-1, 21-2 5-4-5	-1) 24 - 2 4 - 0 - 5	- 17 21
$M_{ m r}$	583.05	599.52	704.57	610.08
Temperature	150(2) K	120(2) K	120(2) K	120(2) K
Crystal	Monoclinic	Monoclinic	Monoclinic	Monoclinic
symmetry				
space group	<i>P</i> 21/c	<i>C</i> 2/c	<i>P</i> 21/c	<i>P</i> 21/c
a/Å	13.9612(3)	25.0741(6)	19.033(2)	11.5192(9)
$b/{ m \AA}$	10.3777(2)	11.9072(2)	9.4724(9)	23.074(2)
$c/\text{\AA}$	13.9987(2)	16.1053(3)	15.2998(16)	8.5728(9)
$\alpha/^{o}$	90	90	90	90
$\beta/^{\mathrm{o}}$	92.437(2)	112.209(3)	111.793(12)	93.618(8)
$\gamma^{\prime 0}$	90	90	90	90
$V/Å^3$	2026.37(7)	4451.70(15)	2561.2(5)	2274.0(4)
Z	4	8	4	4
$D_{\text{calcd}}(g \text{ cm}^{-3})$	1.911	1.789	1.827	1.782
$\mu(\text{mm}^{-1})$	1.256	1.256	1.119	1.125
F(000)	1176	2416	1424	1232
$2\dot{\theta}$	7.02 to 49.98	6 to 50	5.88 to 50	5.92 to 49.98
range(deg)				
Data /	3567 / 0 / 271	3919 / 0 / 271	4504 / 0 / 335	4004 / 0 / 289
restraints /				
parameters				
GOF	1.064	1.057	0.941	1.272
R1, wR2 [<i>I</i>	0.0182, 0.0475	0.0406, 0.1004	0.0501, 0.0899	0.0397, 0.0750
$> 2\sigma(I)$]				
R1, wR2(all	0.0203, 0.0481	0.0561, 0.1047	0.0936, 0.1006	0.0444, 0.0886
data)				
Largest diff.	0.420, -0.382	1.560, -1.434	1.167, -0.732	1.192, -0.977
Peak/hole,				
(e Å ⁻³)				

 Table S2 Selected bond distances (Å) and bond angles (°) for $[Ru^{II}([9]aneS_3)(bpy)(NO_2)](CIO_4)$

 [3](CIO₄), $[Ru^{II}([9]aneS_3)(pap)(CI)](CIO_4)$ [5](CIO₄), $[Ru^{II}([9]aneS_3)(pap)(CH_3CN)](CIO_4)_2$

 [6](CIO₄)₂, $[Ru^{II}([9]aneS_3)(pap)(NO_2)](CIO_4)$ [7](CIO₄)

Distances/angles	[3](ClO ₄)	[5](ClO ₄)	[6](ClO ₄) ₂	[7](ClO ₄)
	$(X=NO_2)$	(X=Cl)	(X=CH ₃ CN)	$(X=NO_2)$
Ru(1)-N(1)	2.0823(15)	2.069(4)	2.073(5)	2.066(3)
Ru(1)-N(2)	2.0875(16)	1.998(4)	2.030(5)	2.037(3)
Ru(1)-S(1)	2.3084(5)	2.3402(13)	2.3426(16)	2.3353(10)
Ru(1)-S(2)	2.3012(5)	2.3308(12)	2.3283(16)	2.3298(10)
Ru(1)-S(3)	2.3435(5)	2.2980(13)	2.3152(15)	2.3404(11)
Ru(1)-X	2.0605(16)	2.4055(12)	2.062(5)	2.084(4)
X-O(1)	1.248(2)	-	-	1.237(4)
X-O(2)	1.248(2)	-	-	1.232(5)
N(2)-N(3)	-	1.287(5)	1.287(6)	1.284(5)
S(1)-Ru(1)-S(2)	87.548(17)	87.18(4)	87.39(6)	87.21(3)
S(1)-Ru(1)-S(3)	87.984(17)	88.00(5)	87.62(6)	87.75(4)
S(2)-Ru(1)-S(3)	88.456(16)	87.92(4)	87.82(6)	87.80(4)
N(1)-Ru(1)-S(2)	174.07(4)	174.92(11)	173.91(13)	174.22(10)
N(1)-Ru(1)-N(2)	78.17(6)	75.72(15)	75.52(18)	76.25(13)
N(1)-Ru(1)-S(1)	97.69(4)	97.40(11)	98.41(13)	97.45(9)
N(2)-Ru(1)-S(1)	175.86(4)	173.09(11)	173.90(14)	173.66(9)
N(1)-Ru(1)-S(3)	88.97(4)	94.39(11)	90.53(12)	88.94(10)
N(2)-Ru(1)-S(2)	96.58(4)	99.72(11)	98.67(13)	99.05(9)
N(2)-Ru(1)-S(3)	91.85(4)	91.81(11)	91.92(13)	91.43(10)
N(1)-Ru(1)-X	89.90(6)	88.45(11)	91.46(18)	89.66(14)
N(2)-Ru(1)-X	87.82(6)	95.27(11)	91.55(18)	93.80(13)
S(1)-Ru(1)-X	92.27(5)	85.11(5)	89.06(14)	86.75(9)
S(2)-Ru(1)-X	92.66(4)	89.78(4)	90.51(14)	94.05(9)
S(3)-Ru(1)-X	178.86(4)	172.84(5)	176.34(14)	174.10(9)
O(1)-X-O(2)	118.47(16)	-	-	119.8(4)
Ru(1)-N(4)-C(18)	-	-	173.5(5)	-
N(4)-C(18)-C(19)	-	-	177.9(6)	-

Table S3 Conformations of coordinated $[9]aneS_3$ in the crystal structures based on theendocyclic torsion angles around the macrocyclic ring

	3 ⁺	4 ³⁺
C(16)-S(1)-C(11)-C(12)	67.12(15)	60.2(5)
S(1)-C(11)-C(12)-S(2)	47.97(17)	52.7(5)
C(13)-S(2)-C(12)-C(11)	-135.19(14)	-134.0(4)
C(12)-S(2)-C(13)-C(14)	64.47(15)	63.2(4)
S(2)-C(13)-C(14)-S(3)	50.12(17)	50.1(5)
C(15)-S(3)-C(14)-C(13)	-134.16(14)	-132.2(4)
C(14)-S(3)-C(15)-C(16)	63.89(16)	62.7(5)
S(3)-C(15)-C(16)-S(1)	48.56(18)	52.8(5)
C(11)-S(1)-C(16)-C(15)	-135.15(14)	-135.1(4)

	5 ⁺	6 ²⁺	7^+
C(17)-S(1)-C(12)-C(13)	-66.1(5)	-67.7(6)	64.8(3)
S(1)-C(12)-C(13)-S(2)	-48.4(5)	-45.7(7)	48.8(4)
C(14)-S(2)-C(13)-C(12)	135.1(4)	130.9(5)	-134.9(3)
C(13)-S(2)-C(14)-C(15)	-67.0(5)	-67.1(6)	67.4(4)
S(2)-C(14)-C(15)-S(3)	-46.7(5)	-49.3(7)	45.9(4)
C(16)-S(3)-C(15)-C(14)	133.5(5)	135.8(5)	-131.0(3)
C(15)-S(3)-C(16)-C(17)	-66.5(4)	-64.5(5)	63.9(4)
S(3)-C(16)-C(17)-S(1)	-47.1(5)	-46.9(6)	51.4(4)
C(12)-S(1)-C(17)-C(16)	133.1(4)	131.7(5)	-137.1(3)

	8 ³⁺	8 ²⁺
Ru(1)-N(1)	2.114	2.106
Ru(1)-N(2)	2.162	2.136
Ru(1)-N(4)	1.749	1.911
Ru(1)-S(1)	2.462	2.418
Ru(1)-S(2)	2.454	2.426
Ru(1)-S(3)	2.460	2.449
N(4)-O(1)	1.135	1.165
N(2)-N(3)	1.269	1.270
N(1)-Ru(1)-N(2)	75.99	75.59
N(1)-Ru(1)-N(4)	94.399	89.19
N(1)-Ru(1)-S(1)	96.819	96.80
N(1)-Ru(1)-S(2)	170.3	175.9
N(1)-Ru(1)-S(3)	85.60	91.23
N(2)-Ru(1)-N(4)	94.13	92.29
N(2)-Ru(1)-S(1)	168.9	170.9
N(2)-Ru(1)-S(2)	100.6	101.4
N(2)-Ru(1)-S(3)	85.86	89.08
N(4)-Ru(1)-S(1)	94.81	92.40
N(4)-Ru(1)-S(2)	94.93	93.65
N(4)-Ru(1)-S(3)	180.0	178.6
S(1)-Ru(1)-S(2)	85.10	85.98
S(1)-Ru(1)-S(3)	85.18	86.24
S(2)-Ru(1)-S(3)	85.06	85.99
Ru(1)-N(4)-O(1)	179.2	139.4

Table S4 DFT calculated selective bond distances and bond angles for $[Ru^{II}([9]aneS_3)(pap)(NO)]^{3+}$ $(\mathbf{8}^{3+})$ and $[Ru^{II}([9]aneS_3)(pap)(NO)]^{2+}$ $(\mathbf{8}^{2+})$

Table S5 DFT calculated conformational analysis of 4^{2+} and 8^{2+}

	4 ²⁺	8 ²⁺
Optimized	$-985.93942540 \ (\theta = 4.45^{\circ})$	$-1079.34692984 \ (\theta = 0.41^{\circ})$
Eclipsed $(\theta = 0^\circ)^a$	-985.93904358	-1079.34571773
Staggered ($\theta = 45^{\circ}$) ^{<i>a</i>}	-985.93824075	-1079.34514831
ΔE (optimized-eclipsed) ^b	-0.2396 kcal/mol (83.8 cm ⁻¹)	-0.7606 kcal/mol (266.0 cm ⁻¹)
ΔE (optimized-staggered) ^b	-0.7434 kcal/mol (260.0 cm ⁻¹)	-1.1179 kcal/mol (391.0 cm ⁻¹)

^{*a*}Energy in Hartrees.

^{*b*}Energy in kcal/mol and cm⁻¹.

Complex	δ, ppm (<i>J</i> , Hz)		
	Aromatic protons	Aliphatic protons	
	8.93 (5.2) (d, 2H)	3.03-2.89 (4H)	
2 ²⁺	8.47 (8.1) (d, 2H)	2.84-2.67 (4H)	
2	8.20 (8.0, 7.8) (t, 2H)	2.62-2.46 (4H)	
	7.67 (6.6) (t, 2H)	2.13 (3H) (CH ₃ CN)	
	9.00 (5.2) (d, 2H)	3.20-3.09 (2H)	
2 ⁺	8.43 (8.0) (d, 2H)	2.95-2.85 (2H)	
5	8.14 (7.9, 7.8) (t, 2H)	2.76-2.63 (4H)	
	7.60 (6.6) (t, 2H)	2.60-2.42 (4H)	
	8.91 (5.5) (d, 2H)	3.95-3.84 (4H)	
1 ³⁺	8.75 (8.2) (d, 2H)	3.70-3.59 (4H)	
4	8.60 (8.0, 7.9) (t, 2H)	3.48-3.38 (4H)	
	8.03 (6.7) (t, 2H)		
	9.13 (5.4) (d, 1H)	3.38-3.14 (4H)	
	8.68 (8.1) (d, 1H)	3.10-2.98 (2H)	
5+	8.25 (7.9) (t, 1H)	2.88-2.68 (2H)	
5	7.83 (m, 2H)	2.66-2.54 (1H)	
	7.78 (9.0, 6.0) (t, 1H)	2.54-2.42 (1H)	
	7.64 (3.9, 2.7) (t, 3H)	2.40-2.20 (2H)	
	9.09 (5.4) (d, 1H)	3.40-3.18 (3H)	
	8.81 (8.1) (d, 1H)	3.02-2.86 (2H)	
6 ²⁺	8.43 (9.0, 6.0) (t, 1H)	2.84-2.72 (2H)	
0	7.92 (6.9, 5.4) (t, 1H)	2.66-2.44 (3H)	
	7.83 (9.0) (d, 2H)	2.42-2.26 (2H)	
	7.72 (m, 3H)	2.23 (3H) (CH ₃ CN)	
	9.12 (6.0) (d, 1H)	3.44-3.30 (2H)	
	8.77 (6.0) (d, 1H)	3.22-3.12 (2H)	
7^+	8.35 (9.0) (t, 1H)	3.04-2.92 (1H)	
1	7.82 (6.6) (t, 1H)	2.82-2.73 (1H)	
	7.76 (m, 2H)	2.62-2.38 (4H)	
	7.66 (m, 3H)	2.36-2.24 (2H)	
	9.20 (7.5) (d, 1H)	4.04-3.96 (1H)	
	9.13 (5.4) (d, 1H)	3.94-3.82 (3H)	
- 2+	8.89 (7.8) (t, 1H)	3.78-3.60 (4H)	
851	8.30 (6.3, 6.0) (t, 1H)	3.58-3.46 (1H)	
	8.09 (9.0) (d, 2H)	3.42-3.26 (2H)	
	8.00 (7.5, 7.2) (t, 1H)	2.82-2.66 (1H)	
	7.85 (8.4, 7.5) (t, 2H)		

Table S6 ¹H NMR spectral data in CD₃CN

Table S7 ¹³C NMR spectral data in CD₃CN

Complex	δ,	ppm
	Aromatic	Aliphatic
	carbons	carbons
	157.92	33.91
	154.53	33.79
3 ⁺	139.61	32.82
	128.31	
	124.64	
	157.23	40.74
	156.47	40.39
4 ³⁺	145.83	38.56
	131.95	
	127.95	
	166.36	36.87
	157.99	36.30
	152.68	34.67
	141.56	32.77
7 ⁺	132.89	32.56
	130.59	32.05
	129.96	
	129.59	
	123.65	
	166.30	36.84
	157.94	36.29
	152.67	34.65
	141.55	32.69
8 ³⁺	132.87	32.50
	130.58	31.97
	129.97	
	129.59	
	123.62	

Table S8 Electronic spectral data in CH₃CN

Complex	$\lambda/\mathrm{nm}~(\varepsilon/\mathrm{M}^{-1}\mathrm{cm}^{-1})$
2 ²⁺	384(2280), 315(4080), 307(4680), 278(13010), 240(6400)
3 ⁺	408(1300), 316(2120), 283(12450), 241(7690)
4 ³⁺	306(6490), 226(17580)
4 ²⁺	407(1790), 315(3400), 285(10760), 242(7260)
5 ⁺	534(4180), 367(4120), 316(8760)
6 ²⁺	480(5450), 369(7260), 306(6700), 278(7940)
7^+	498(5190), 363(7160), 309(9330), 281(8360)
8 ³⁺	444(2750), 358(4370), 311(4190), 275(4370)
8 ²⁺	500(3260), 343(5590), 315(5920), 282(5090)

Excitation energy/eV	λ/nm	f	Transition	Character
3.09	400.9	0.0048	(64%)HOMO-2 → LUMO	$bpy(\pi) \to NO(\pi^*)/Ru(d\pi)$
3.20	387.3	0.0057	(67%)HOMO-4 \rightarrow LUMO	$L(\pi)/bpy(\pi) \rightarrow NO(\pi^*)/Ru(d\pi)$
3.91	317.1	0.0908	(69%)HOMO \rightarrow LUMO+4	$bpy(\pi) \to bpy(\pi^*)$
4.04	306.8	0.0316	(53%)HOMO-4 \rightarrow LUMO+2 (21%)HOMO-3 \rightarrow LUMO+3	$L(\pi)/bpy(\pi) \rightarrow Ru(d\pi)$
4.47	277.2	0.0305	(45%)HOMO-5 \rightarrow LUMO+4 (24%)HOMO-5 \rightarrow LUMO+5	$bpy(\pi) \to bpy(\pi^*)$
4.49	275.9	0.0204	(43%)HOMO-5 \rightarrow LUMO+5 (23%)HOMO-5 \rightarrow LUMO+4	$bpy(\pi) \to bpy(\pi^*)$

Table S9(a) TD-DFT results for $[Ru^{II}([9]aneS_3)(bpy)(NO^+)]^{3+}(4^{3+})$

Table S9(b) TD-DFT Results for $[Ru^{II}([9]aneS_3)(pap)(NO^+)]^{3+}$ (8³⁺)

Excitation energy/ eV	λ/nm	f	Transition	Character
2.70	459.2	0.0432	(61%)HOMO-1 \rightarrow LUMO+1 (21%)HOMO \rightarrow LUMO	$\operatorname{pap}(\pi) \to \operatorname{NO}(\pi^*)/\operatorname{Ru}(\mathrm{d}\pi)$
2.84	435.6	0.0789	(67%)HOMO-2 \rightarrow LUMO	$\operatorname{pap}(\pi) \to \operatorname{NO}(\pi^*)/\operatorname{Ru}(\mathrm{d}\pi)$
3.38	366.9	0.0883	(89%)HOMO \rightarrow LUMO+4	$\operatorname{pap}(\pi) \to \operatorname{pap}(\pi^*)$
3.51	352.8	0.0556	(63%)HOMO-2 \rightarrow LUMO+2	$\operatorname{pap}(\pi) \to \operatorname{pap}(\pi^*)$
4.23	292.7	0.0913	(45%)HOMO-7 \rightarrow LUMO+2 (37%)HOMO-6 \rightarrow LUMO+2	$\operatorname{pap}(\pi)/\operatorname{L}(\pi) \to \operatorname{pap}(\pi^*)$

Excitation energy/eV	λ/nm	f	Transition	Character
2.76	448.8	0.0016	$(37\%)\text{HOMO-3}(\alpha) \rightarrow \text{LUMO}(\alpha)$ $(47\%)\text{HOMO-2}(\beta) \rightarrow \text{LUMO+1}(\beta)$	$\operatorname{Ru}(d\pi)/\operatorname{bpy}(\pi) \rightarrow \operatorname{NO}(\pi^*)$
2.92	424.6	0.0045	(56%)HOMO-1(α) \rightarrow LUMO+1(α)	$bpy(\pi) \to bpy(\pi^*)$
3.02	410.2	0.0105	(60%)HOMO(β) \rightarrow LUMO+2(β)	$\operatorname{Ru}(d\pi) \to \operatorname{bpy}(\pi^*)$
3.40	364.1	0.0090	(62%)HOMO-3(β) \rightarrow LUMO+2(β)	$\operatorname{Ru}(d\pi) \to \operatorname{bpy}(\pi^*)$
3.46	357.9	0.0102	(53%)HOMO-3(α) \rightarrow LUMO+1(α)	$\operatorname{Ru}(d\pi)/\operatorname{bpy}(\pi) \to \operatorname{bpy}(\pi^*)$
3.72	333.0	0.0245	$(29\%)\text{HOMO-4}(\alpha) \rightarrow \text{LUMO+1}(\alpha)$ $(28\%)\text{HOMO-4}(\beta) \rightarrow \text{LUMO+2}(\beta)$	$\begin{array}{l} \operatorname{Ru}(d\pi)/\operatorname{bpy}(\pi) \to \operatorname{bpy}(\pi^*) \\ L(\pi)/\operatorname{bpy}(\pi) \to \operatorname{bpy}(\pi^*) \end{array}$
3.89	318.5	0.0239	(82%)HOMO-2(β) \rightarrow LUMO+4(β)	$\operatorname{Ru}(d\pi)/\operatorname{bpy}(\pi) \to \operatorname{bpy}(\pi^*)$
4.26	290.8	0.0451	$(37\%)\text{HOMO-7}(\alpha) \rightarrow \text{LUMO+1}(\alpha)$ $(25\%)\text{HOMO-6}(\beta) \rightarrow \text{LUMO+2}(\beta)$	$bpy(\pi) \to bpy(\pi^*)$
4.42	280.1	0.0637	$(43\%)\text{HOMO-6}(\beta) \rightarrow \text{LUMO+2}(\beta)$ $(21\%)\text{HOMO-7}(\alpha) \rightarrow \text{LUMO+1}(\alpha)$	$bpy(\pi) \to bpy(\pi^*)$

Table S10(a) TD-DFT results for $[Ru^{II}([9]aneS_3)(bpy)(NO^{\bullet})]^{2+}(4^{2+})$

Table S10(b) TD-DFT results for $[Ru^{II}([9]aneS_3)(pap)(NO^{\bullet})]^{2+}(8^{2+})$

Excitation	λ/nm	f	Transition	Character
energy/eV				
2.30	538.5	0.0066	(69%)SOMO(α) \rightarrow LUMO(α)	$\operatorname{Ru}(d\pi)/\operatorname{NO}(\pi^*) \to \operatorname{pap}(\pi^*)$
2.55	486.5	0.0159	(43%)HOMO-3(α) \rightarrow LUMO(α) (26%)HOMO-3(α) \rightarrow LUMO+1(α)	$Ru(d\pi) \to pap(\pi^*)$ $Ru(d\pi) \to NO(\pi^*)$
3.71	334.0	0.0583	(47%)HOMO-5(β) \rightarrow LUMO(β) (28%)HOMO-6(α) \rightarrow LUMO(α)	$\operatorname{pap}(\pi) \to \operatorname{pap}(\pi^*)$
3.94	314.5	0.0026	(51%)HOMO-6(β) \rightarrow LUMO(β) (32%)HOMO-8(α) \rightarrow LUMO(α)	$\operatorname{pap}(\pi)/\operatorname{L}(\pi) \to \operatorname{pap}(\pi^*)$

Table S11 Redox potential data^a

	$E^{o}_{298}/V (\Delta E_{p}/mV)$						
Complex	Ru ^{III} / Ru ^{II}	$NO^+ \rightarrow NO^{\bullet}$ (I)	$NO^{\bullet} \rightarrow NO^{-}$ (II)	Ligand reduction			
2 ²⁺	1.61(70)	_	_	-1.41(70), -1.57(70)			
3 ⁺	1.31 ^b	_	_	-1.55(70), -1.79(70),			
4 ³⁺	>2	0.49(90)	0.07^{b}	-1.01 ^{<i>b</i>} , -1.52(70)			
5 ⁺	1.34(80)	_	_	-0.74(80), -1.30(120),			
				-1.51(70)			
6 ²⁺	1.86(90)	_	_	-0.49(70), -1.16(130),			
0				-1.50(70)			
7+	1 68 ^b	_	_	$-0.52(70), -1.31^b,$			
7	1.68	_	_	-1.39 ^b			
o ³⁺	>2	0.67(90)	0.03 ^{<i>b</i>}	-0.44 ^b , -0.53(60),			
U				-0.71(60)			

^{*a*}Potentials with reference to SCE; in CH₃CN/0.1 M Et₄NClO₄; scan rate, 100 mV s⁻¹. ^{*b*}Irreversible.

МО	Energy/		Comp	oosition	
	eV –	Ru	bpy	[9]aneS ₃	NO
LUMO+5	-10.65	02	91	07	0
LUMO+4	-11.72	05	92	02	01
LUMO+3	-12.18	50	22	28	0
LUMO+2	-12.28	49	12	30	09
LUMO+1	-13.41	22	02	04	72
LUMO	-13.41	24	02	04	70
HOMO	-16.39	01	99	0	0
HOMO-1	-17.49	21	55	18	06
HOMO-2	-17.58	07	85	03	05
HOMO-3	-17.83	30	25	44	01
HOMO-4	-17.92	19	20	55	06
HOMO-5	-17.94	02	74	23	01
HOMO-6	-18.25	10	27	62	01
HOMO-7	-18.46	42	22	31	05
HOMO-8	-18.94	14	58	27	01
HOMO-9	-19.21	46	21	18	15
HOMO-10	-19.28	28	49	19	04

Table S12 MO composition of 4^{3+}

LUMO

LUMO+1

13

LUMO+2

Table S13 MO composition of 8³⁺

МО	Energy/	Composition				
	eV	Ru	pap	[9]aneS ₃	NO	
LUMO+5	-10.72	50	18	28	04	
LUMO+4	-12.18	02	94	04	0	
LUMO+3	-12.32	49	17	29	05	
LUMO+2	-12.73	08	86	03	03	
LUMO+1	-13.43	23	02	04	71	
LUMO	-13.46	19	10	03	68	
HOMO	-15.62	01	99	0	0	
HOMO-1	-15.76	01	98	01	0	
HOMO-2	-17.27	04	86	10	0	
HOMO-3	-17.43	06	70	21	03	
HOMO-4	-17.56	19	55	20	06	
HOMO-5	-17.81	25	39	35	01	
HOMO-6	-18.02	22	17	57	04	
HOMO-7	-18.21	03	81	15	01	
HOMO-8	-18.26	13	31	52	04	
HOMO-9	-18.46	02	92	05	01	
HOMO-10	-18.58	35	34	27	04	

LUMO

LUMO+1

LUMO+2

Table S14aMO composition of 4^{2+}

α-spin							
МО	Energy/	Composition					
	eV -	Ru	bpy	[9]aneS ₃	NO		
LUMO+5	-7.17	19	65	09	07		
LUMO+4	-7.22	26	50	15	09		
LUMO+3	-7.35	09	81	07	03		
LUMO+2	-7.62	52	18	30	0		
LUMO+1	-8.33	03	96	01	0		
LUMO	-8.96	17	01	04	78		
SOMO	-12.03	30	05	12	53		
HOMO-1	-13.06	04	95	01	0		
HOMO-2	-13.21	70	05	20	05		
HOMO-3	-13.41	52	24	11	13		
HOMO-4	-13.73	51	18	07	24		
HOMO-5	-14.27	05	32	63	0		

Table S14b	MO com	position	of 4 ²⁺
------------	--------	----------	---------------------------

β-spin						
МО	Energy/	Composition				
	eV -	Ru	bpy	[9]aneS ₃	NO	
LUMO+5	-7.19	02	95	03	0	
LUMO+4	-7.32	02	96	02	0	
LUMO+3	-7.57	52	18	30	0	
LUMO+2	-8.30	04	93	02	01	
LUMO+1	-8.58	14	04	04	78	
LUMO	-8.97	28	06	12	54	
HOMO	-13.02	62	14	19	05	
HOMO-1	-13.05	07	90	02	01	
HOMO-2	-13.36	63	17	12	08	
HOMO-3	-13.37	70	13	10	07	
HOMO-4	-14.27	05	33	62	0	
HOMO-5	-14.35	10	14	74	02	

Table S15a. MO composition of 8^{2+}

a-spin						
МО	Energy/			Composition		
	eV	Ru	pap	[9]aneS ₃	NO	
LUMO+5	-6.59	12	18	70	0	
LUMO+4	-7.28	49	10	24	17	
LUMO+3	-7.41	04	92	03	01	
LUMO+2	-7.79	52	18	29	01	
LUMO+1	-8.96	19	19	02	60	
LUMO	-9.39	02	77	01	20	
SOMO	-12.20	31	07	12	50	
HOMO-1	-12.54	02	93	01	04	
HOMO-2	-12.70	01	98	01	0	
HOMO-3	-13.30	62	13	20	05	
HOMO-4	-13.58	52	14	23	11	
HOMO-5	-13.73	46	28	09	17	

SOMO

LUMO

HOMO-1

HOMO-2

LUMO+2

Table S15b MO composition of 8²⁺

β-spin							
МО	Energy/		Composition				
	eV	Ru	pap	[9]aneS ₃	NO		
LUMO+5	-6.74	34	06	28	32		
LUMO+4	-7.40	02	96	02	0		
LUMO+3	-7.72	52	18	29	01		
LUMO+2	-8.63	17	05	02	76		
LUMO+1	-9.13	02	90	01	07		
LUMO	-9.33	30	03	13	54		
HOMO	-12.52	04	95	01	0		
HOMO-1	-12.70	01	98	01	0		
HOMO-2	-13.14	57	17	20	06		
HOMO-3	-13.32	73	10	14	03		
HOMO-4	-13.63	55	21	15	09		
HOMO-5	-13.91	06	65	26	03		

LUMO

LUMO+1

LUMO+2

Fig. S1 Molecular structure of the cation of [Ru^{II}([9]aneS₃)(bpy)(NO₂)](ClO₄) in the crystal structure of [3](ClO₄). Ellipsoids are drawn at 50% probability. Hydrogen atoms are omitted for clarity.

Fig. S2 Molecular structure of the cation of [Ru^{II}([9]aneS₃)(pap)(Cl)](ClO₄) in the crystal structure of [5](ClO₄). Ellipsoids are drawn at 50% probability. Hydrogen atoms are omitted for clarity.

Fig. S3 Molecular structure of the cation of [Ru^{II}([9]aneS₃)(pap)(CH₃CN)](ClO₄)₂ in the crystal structure of [6](ClO₄)₂. Ellipsoids are drawn at 50% probability. Hydrogen atoms are omitted for clarity.

Fig. S4 Molecular structure of the cation of [Ru^{II}([9]aneS₃)(pap)(NO₂)](ClO₄) in the crystal structure of [7](ClO₄). Ellipsoids are drawn at 50% probability. Hydrogen atoms are omitted for clarity.

Fig. S5 ¹H NMR spectra in CD₃CN of (a) $[Ru^{II}([9]aneS_3)(bpy)(NO)]^{3+}$ (4³⁺) and (b) $[Ru^{II}([9]aneS_3)(pap)(NO)]^{3+}$ (8³⁺).

Fig. S6 ¹³C NMR spectra in CD₃CN of (a) $[Ru^{II}([9]aneS_3)(bpy)(NO)]^{3+}$ (4³⁺) and (b) $[Ru^{II}([9]aneS_3)(pap)(NO)]^{3+}$ (8³⁺).

Fig. S7 ¹³C NMR spectra in CD₃CN of (a) $[Ru^{II}([9]aneS_3)(bpy)(NO_2)]^+$ (**3**⁺) and (b) $[Ru^{II}([9]aneS_3)(pap)(NO_2)]^+$ (**7**⁺).

Fig. S8 Electronic spectra in CH₃CN of (a) $[Ru^{II}([9]aneS_3)(bpy)(CH_3CN)]^{2+}$ (2²⁺), $[Ru^{II}([9]aneS_3)(bpy)(NO_2)]^+$ (3⁺) and (b) $[Ru^{II}([9]aneS_3)(pap)(CI)]^+$ (5⁺), $[Ru^{II}([9]aneS_3)(pap)(CH_3CN)]^{2+}$ (6²⁺), $[Ru^{II}([9]aneS_3)(pap)(NO_2)]^+$ (7⁺).

Fig. S9 Electronic spectra in CH₃CN of (a) $[Ru^{II}([9]aneS_3)(bpy)(NO)]^{3+}$ (4³⁺), $[Ru^{II}([9]aneS_3)(bpy)(NO)]^{2+}$ (4²⁺) and (b) $[Ru^{II}([9]aneS_3)(pap)(NO)]^{3+}$ (8³⁺), $[Ru^{II}([9]aneS_3)(pap)(NO)]^{2+}$ (8²⁺).

Fig. S10 EPR spectra of $[Ru^{II}([9]aneS_3)(bpy)(NO)]^{2+}$ (4²⁺) in CH₃CN at 110 K.