Supporting Information for:

Hydroboration of an Alkene by Amine-Borane Catalysed by a [Rh(PR₃)₂]⁺ fragment. Mechanistic Insight and Tandem Hydroboration/Dehydrogenation.

Laura J. Sewell, Adrian B. Chaplin and Andrew S. Weller*

Department of Chemistry, Inorganic Chemistry Laboratories, University of Oxford, Oxford, OX1 3QR, UK.

Experimental	S-2
Synthesis of new complexes	S-2
Catalytic formation of 3	S-3
Oxidation of 3	S-3
Kinetics	S-4
Equilibrium constant	S-7
DMAB + TBE	S-7
References	S-8

Experimental

All manipulations, unless otherwise stated, were performed under an atmosphere of argon, using standard Schlenk and glove-box techniques. Glassware was oven dried at 130 °C overnight and flamed under vacuum prior to use. Pentane was dried using a Grubbs type solvent purification system (MBraun SPS-800) and degassed by successive freeze-pump-thaw cycles.¹ *t*-butylethene (TBE) was dried over sodium, vacuum distilled and stored over 3 Å molecular sieves. 1,2-C₆H₄F₂ and CD₂Cl₂ were dried over CaH₂, vacuum distilled and stored over 3 Å molecular sieves. H₃B NMe₃ was purchased from Aldrich and sublimed before use (5×10^{-2} Torr, 298 K). H₃B NMe₂H was purchased from Acros and sublimed twice before use (5×10^{-2} Torr, 298 K). Na[BAr^{Cl}₄]², and [Rh(PiBu₂!Bu)₂][BAr^F₄]³ (**B**) were prepared by literature methods. All other chemicals are commercial products and were used as received. NMR spectra were recorded on a Varian Mercury VX 300 MHz or a Varian Unity Plus 500 MHz spectrometer at room temperature. In 1,2-C₆H₄F₂, ¹H NMR spectra were referenced to the centre of the downfield solvent multiplet ($\delta = 7.07$). ³¹P NMR spectra and ¹¹B NMR spectra were referenced externally against 85% H₃PO₄ and BF₃.OEt₂ respectively. Chemical shifts are quoted in ppm and coupling constants in Hz. ESI-MS were recorded on a Bruker MicrOTOF-Q instrument interfaced with a glovebox.⁴ Microanalyses were performed by Elemental Microanalysis Ltd.

Synthesis of new complexes

[Rh(PⁱBu₂^tBu)₂][BAr^{Cl}₄]

Preparation same as the literature procedure for **B** substituting $[BAr^{F_4}]^{-1}$ for $[BAr^{Cl_4}]^{-1}$ (Ar^{Cl}= 3,5-C₆H₅Cl₂). Yield: 65 %.

¹**H NMR** (CD₂Cl₂, 500 MHz): δ 7.04 – 6.99 (m, 12H, BAr^{Cl}₄), 1.90 – 1.74 (m, 8H, ⁱBu{CH/CH₂}), 1.72 – 1.63 (m, 4H, ⁱBu{CH₂}), 1.14 (dd, 18H, J = 7.5, J = 7.3, ^tBu{Me}), 1.00 – (-0.80) (br, 24H, ⁱBu{Me}).

³¹P {¹H} NMR (CD₂Cl₂, 202 MHz): δ 64.2 (br).

$[Rh(P^{i}Bu_{2}^{t}Bu)_{2}(\eta^{2}-Me_{3}N\cdot H_{2}BCH_{2}CH_{2}CMe_{3}))][BAr^{F}_{4}] (2)$

1,2-C₆H₄F₂ (1 mL) was added to a Young's crystallisation tube containing **B** (0.050 g, 0.037 mmol) and H₃B·NMe₃ (0.0027 g, 0.037 mmol). TBE (24 μ L, 0.183 mmol) was then added and the tube sealed. After 5 days the purple solution was layered with pentane and held at 5 °C yielding the product as deep

purple crystals. Yield: 0.042 g (72 %). Crystals suitable for single crystal X-ray diffraction were grown by using Rh(PⁱBu₂^tBu)₂][BAr^{Cl}₄].

¹**H NMR** (1,2-C₆H₄F₂, 500 MHz): δ 8.34 (s, 8H, BAr^F₄), 7.69 (s, 4H, BAr^F₄), 2.94 (s, 9H, NMe₃), 2.18 (br, 4H, ⁱBu{CH}), 1.97 – 1.79 (m, 8H, ⁱBu{CH₂}), 1.73 - 1.70 (m, 2H, CH₂), 1.34 – 1.20 (m, 44H, ⁱBu{Me}, ⁱBu{Me}, CH₂), 1.02 (s, 9H, C{Me}), -7.07 (br, 2H, BH₂).

¹H {¹¹B} NMR (1,2-C₆H₄F₂, 500 MHz): δ 8.34 (s, 8H, BAr^F₄), 7.69 (s, 4H, BAr^F₄), 2.93 (s, 9H, NMe₃), 2.18 (br, 4H, ⁱBu{CH}), 1.97 - 1.79 (m, 8H, ⁱBu{CH}₂), 1.72 - 1.70 (m, 2H, CH₂), 1.34 - 1.20 (m, 44H, ⁱBu{Me}, ^tBu{Me}, CH₂), 1.02 (s, 9H, C{Me}), -7.07 (apparent triplet, 2H, ²J_{HP} = 32 and ¹J_{RhH} = 32, BH₂).

³¹**P** {¹**H**} **NMR** (1,2-C₆H₄F₂, 202 MHz): δ 53.8 (d, ¹J_{RhP} = 182).

¹¹**B NMR** (1,2-C₆H₄F₂, 160 MHz): δ 37.9 (br, BH₂), -6.1 (s, BArF₄).

Anal. Calcd for C₆₅H₉₀B₂F₂₄NP₂Rh (1527.85 gmol⁻¹): C, 51.10; H, 5.94; N, 0.92. Found: C, 51.51; H, 5.86; N, 0.97.

ESI-MS (1,2-C₆H₄F₂, 60°C) positive ion: *m*/*z* 664.4840 [M⁺] (calc. 664.4758).

Catalytic Formation of 3

1,2-C₆H₄F₂ (435 L) and TBE (15 L, 0.117 mmol) were added to a high pressure NMR tube containing **B** (0.0080 g, 0.006 mmol) and H₃B·NMe₃ (0.0085 g, 0.117 mmol).The tube was sealed and in situ analysis by ¹H and ¹¹B NMR spectroscopy indicated the formation of **3**. Only ~70% conversion is achieved with ~ 30% H₃B·NMe₃ unreacted.

¹**H NMR** (1,2-C₆H₄F₂, 500 MHz): δ 2.51 (s, 9H, NMe₃), 2.40 – 1.93 (m, 2H, BH₂), 1.43 – 1.40 (m, 2H, CH₂CH₂CMe₃), 1.02 (s, 9H, CMe₃), 0.55 (br, 2H, CH₂CH₂CMe₃).

¹¹**B NMR** (1,2-C₆H₄F₂, 160 MHz): δ -0.83 (t, ¹J_{HB} = 96).

Oxidation of 3

1,2-C₆H₄F₂ (0.4 mL) and TBE (350 μ L, 1.4 mmol) were added to a Young's NMR tube containing **B** (0.038 g, 0.028 mmol) and H₃B·NMe₃ (0.100 g, 1.371 mmol). After 6 days the solution was transferred to a round bottomed flask and THF (2 mL) followed by EtOH (2 mL), NaOH (2M, 2 mL) and H₂O₂ (35 %

aq. solution, 3 mL) were added. The solution was stirred at 40 °C for 16 hours to ensure complete oxidation. The reaction mixture was extracted with Et₂O (3 x 20 mL), and the organic phase washed with a 2M aq. NaOH solution (20 mL), H₂O (20 mL) and finally brine (20 mL). The organic layer was dried over MgSO₄, filtered and concentrated to yield the expected HOCH₂CH₂^tBu as the only product (¹H NMR spectroscopy).

Kinetics

5 mol% of B

1,2-C₆H₄F₂ (435 μ L) and TBE (15 μ L, 0.117 mmol) were added to a high pressure NMR tube containing **B** (0.0080 g, 0.006 mmol) and H₃B·NMe₃ (0.0085 g, 0.117 mmol). The sample was shaken twice and then immediately followed by ¹¹B NMR spectroscopy. Catalysis had slowed dramatically at ~70% completion at which point the solution was transferred to another NMR tube containing a further 20 equivalents of TBE (15 μ L, 0.117 mmol) and H₃B·NMe₃ (0.0085 g, 0.117 mmol). Catalysis was seen to restart at a slightly lower initial rate (1 x 10⁻⁶ Ms⁻¹ *versus* 4 x 10⁻⁶ Ms⁻¹).

catalysed by B (5 mol%)

Figure S-2: Initial rate over 2100 seconds (5 mol% B)

10 mol% of B

1,2-C₆H₄F₂ (435 μ L) and TBE (15 μ L, 0.117 mmol) were added to a high pressure NMR tube containing **B** (0.0160 g, 0.0117 mmol) and H₃B·NMe₃ (0.0085 g, 0.117 mmol). The sample was shaken twice and then immediately followed by ¹¹B NMR spectroscopy. An initial rate of 7 x 10⁻⁶ Ms⁻¹ was seen over the first 2100 seconds.

Figure S-3: Initial rate over 2100 seconds (10 mol% B)

2 fold excess of TBE at 5 mol% of B

1,2-C₆H₄F₂ (420 μ L) and TBE (30 μ L, 0.234 mmol) were added to a high pressure NMR tube containing **B** (0.0080 g, 0.006 mmol) and H₃B·NMe₃ (0.0085 g, 0.117 mmol). The sample was shaken twice and then immediately followed by ¹¹B NMR spectroscopy. An initial rate of 8 x 10⁻⁶ Ms⁻¹ was seen over the first 2100 seconds.

Figure S-4: Initial rate over 2100 seconds with a 2 fold excess of TBE (5 mol% B)

10 fold excess of TMAB at 5 mol% of B

1,2-C₆H₄F₂ (435 μ L) and TBE (15 μ L, 0.117 mmol) were added to a high pressure NMR tube containing **B** (0.0080 g, 0.006 mmol) and H₃B·NMe₃ (0.085 g, 1.17 mmol). The sample was shaken twice and then immediately followed by ¹¹B NMR spectroscopy. An initial rate of 4 x 10⁻⁶ Ms⁻¹ was seen over the first 2100 seconds.

Figure S-5: Initial rate over 2100 seconds with a 10 fold excess of TMAB (5 mol% B)

Equilibrium constant

350 μ L of a 0.0187 M solution of H₃B·NMe₃ in 1,2-C₆H₄F₂ was added to a high pressure NMR tube containing **2** (0.010 g, 0.0065 mmol). After 3 hours, analysis by ¹H NMR spectroscopy gave an equilibrium constant, K of 1.62.

K = [<u>2][TMAB]</u> [1][3]

DMAB + TBE

10 fold excess of TBE at 5 mol%

A solution of DMAB (0.0086 g, 0.146 mmol) in 1,2-C₆H₄F₂ (2 mL) was added dropwise with stirring over a period of 30 minutes to a Young's flask containing **B** (0.010 g, 7.3×10^{-3} mmol), TBE (0.188 mL, 1.46 mmol) and 1,2-C₆H₄F₂ (3 mL). After 2 hours, analysis by ¹¹B NMR spectroscopy showed 3 major products; **4**, **5** and [H₂BNMe₂]₂.

Figure S-6: ¹¹B NMR spectrum from the reaction of H₃B·NMe₂H and TBE catalysed by B (5 mol%) showing tandem hydroboration/dehydrogenation. (R = CH₂CH₂'Bu)

References

- 1. A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, *Organometallics*, 1996, **15**, 1518-1520.
- 2. A. B. Chaplin and A. S. Weller, European Journal of Inorganic Chemistry, 2010, 2010, 5124-5128.
- 3. L. J. Sewell, A. B. Chaplin, J. A. B. Abdalla and A. S. Weller, *Dalton Transactions*, 2010, **39**, 7437-7439.
- 4. A. T. Lubben, J. S. McIndoe and A. S. Weller, Organometallics, 2008, 27, 3303-3306.