

Dynamic Article Links **>**

Cite this: DOI: 10.1039/c0xx00000x

Supporting Infomation

www.rsc.org/xxxxxx

10

3,4,3-LI(1,2-HOPO): *In Vitro* Formation of Highly Stable Lanthanide Complexes Translates into Efficacious *In Vivo* Europium Decorporation

Manuel Sturzbecher-Hoehne,^a Clara Ng Pak Leung,^a Anthony D'Aléo,^a Birgitta Kullgren,^a Anne-Laure Prigent,^a David K. Shuh,^a Kenneth N. Raymond^{a,b} and Rebecca J. Abergel^{*a}

^aChemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. E-mail: rjabergel@lbl.gov; Fax: +1 510 486 5596; Tel: +1 510 486 5249

^bDepartment of Chemistry, University of California, Berkeley, CA 94720-1460, USA.

Figure S1. Absorption spectra of $[Ln^{III}(3,4,3-LI(1,2-HOPO))]^{-15}$ complexes in the visible, pH = 7.4, I = 0.1M (KCl).

²⁰ Table S1. Lanthanide Hydrolysis Constants Included in Stability Constants Refinement.^a

Species	La	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
MH_{-1}^{b}	-8.8	-8.3	-8.2	-8.1	-8.1	-8.1	-7.9	-7.9	-7.8	-7.7	-7.7	-7.7	-7.4
MH_{-2}^{c}		-15.6	-15.3		-14.4	-14.5		-13.6					
MH_{-3}^{d}	-20.3	-22.3	-23.2	-23.9	-24.5	-24.1	-24.3	-23.9	-24.5	-24.7	-24.7	-24.7	-25.1
$M_2H_{-2}^{c}$	-17.1			-14.1						-13.1		-12.7	

^{*a*}All values are reported as log β and were previously reported in A. E. Martell, R. M. Smith, R. J. Motekaitis, NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0.

^bThe values for MH₋₁ are corrected for I = 0.1 M with the help of the equation used in Klungness, G.D. and Byrne, R.H. ²⁵ *Polyhedron*, 2000, **19**, 99-107.

 $^{\rm c}I = 2.0$ M.

 ${}^{\rm d}I = 0.0$ M.

30

Metal	Species	m/z^b
La	[La ^{III} (3,4,3-LI(1,2-HOPO))] ⁻	885
Pr	$[\Pr^{III}(3,4,3-LI(1,2-HOPO))]^{-1}$	887
Nd	[Nd ^{III} (3,4,3-LI(1,2-HOPO))] ⁻	890
Sm	[Sm ^{III} (3,4,3-LI(1,2-HOPO))] ⁻	898
Eu	$[Eu^{III}(3,4,3-LI(1,2-HOPO))]^{-1}$	899
Gd	[Gd ^{III} (3,4,3-LI(1,2-HOPO))] ⁻	904
Tb	$[\text{Tb}^{III}(3,4,3-\text{LI}(1,2-\text{HOPO}))]^{-1}$	905
Dy	[Dy ^{III} (3,4,3-LI(1,2-HOPO))] ⁻	910
Но	[Ho ^{III} (3,4,3-LI(1,2-HOPO))] ⁻	911
Er	[Er ^{III} (3,4,3-LI(1,2-HOPO))] ⁻	914
Tm	[Tm ^{III} (3,4,3-LI(1,2-HOPO))] ⁻	915
Yb	[Yb ^{III} (3,4,3-LI(1,2-HOPO))] ⁻	920
Lu	[Lu ^{III} (3,4,3-LI(1,2-HOPO))] ⁻	921

Table S2. Observed Mass-to-Charge Ratios for [Ln^{III}(3,4,3-LI(1,2-HOPO))]⁻ complexes at pH 7.4.^{*a*}

 a [3,4,3-LI(1,2-HOPO)] = 0.5 mM [Ln^{III}] = 0.05 mM, no buffer added.

⁵ ^bReported numbers correspond to the main peaks in each spectrum.

Table S3. Promotion of ¹⁵²Eu Excretion in Mice by Injected Octadentate Ligands.^{*a*}

Fraction of injected	¹⁵² Eu (%,	mean \pm SD)	at 24 h
	· · · ·		

	Excreta ^b						
Ligand	Liver	Skeleton	Soft tissue	Kidneys	Whole body	Feces	Urine
Control	30.7 ± 1.93	28.9 ± 1.25	6.29 ± 0.90	1.0 ± 0.22	67.0 ± 1.21	2.19	30.8
DTPA	22.0 ± 0.90	25.9 ± 2.17	4.94 ± 0.27	0.78 ± 0.09	53.7 ± 1.78	8.71	37.6
3,4,3-LI(1,2-HOPO)	1.24 ± 0.22	12.8 ± 0.47	3.12 ± 0.31	0.44 ± 0.10	17.6 ± 0.71	52.6	29.8
<i>a</i>			152_				

¹⁰ ^{*a*}Groups of five mice were injected intravenously with ¹⁵²Eu; mice were injected intraperitoneally with 30 µmol/kg of a ligand at 1 h; control mice were given 0.14 M NaCl (normal saline) intraperitoneally; mice were euthanized at 24 h. Data, expressed as percent of injected ¹⁵²Eu (%, mean \pm SD), were normalized to 100% material recovery for each five-mouse group. Discrepancies are due to rounding. SD = [Σ dev² (n-1)⁻¹]^{1/2}; for tissues, n = number of mice. ^{*b*}Excreta of each five-mouse group were pooled; no SD is available.

15

Table S4. In Vivo Stability of Intraperitoneally Injected ¹⁵²Eu Complexes.^a

Fraction of injected 152 Eu (%, mean ± SD) at 24 h								
	Excreta ^b							
Ligand	Liver	Skeleton	Soft tissue	Kidneys	Whole body	Feces	Urine	
DTPA	0.09 ± 0.02	0.07 ± 0.05	0.22 ± 0.11	0.11 ± 0.025	0.49 ± 0.12	10.1	89.4	
3,4,3-LI(1,2-HOPO)	0.05 ± 0.03	0.02 ± 0.03	0.10 ± 0.04	0.022 ± 0.004	0.20 ± 0.07	89.3	10.5	
^a Groups of five mice	were injected	intraperitonea	ally with ¹⁵² Fi	1-ligand comple	exes: 5 umol/k	o of lig	and [.] ligand [.] F	

^{*a*}Groups of five mice were injected intraperitoneally with ¹⁵²Eu-ligand complexes; 5 µmol/kg of ligand; ligand:Eu molar ²⁰ ratio > 20; mice were euthanized at 24 h. Data, expressed as percent of injected ¹⁵²Eu (%, mean ± SD), were normalized to 100% material recovery for each five-mouse group. Discrepancies are due to rounding. SD = $[\Sigma \text{ dev}^2 (n-1)^{-1}]^{1/2}$; for tissues, n = number of mice.

^bExcreta of each five-mouse group were pooled; no SD is available.

25