Supporting Information

Bis-diimidazolylidine complexes of nickel: Investigations into nickel catalyzed coupling reactions

Tressia A. P. Paulose,^a Shih-Chang Wu,^a Jeremy A. Olson,^a Tony Chau,^a Nikki Theaker,^a Matt Hassler,^a J. Wilson Quail^b and Stephen R. Foley^{*a}

^aDepartment of Chemistry, University of Saskatchewan and ^bSaskatchewan Structural Sciences Centre, 110 Science Place, S7N 5C9, Saskatoon, Saskatchewan, Canada.

*e-mail: stephen.foley@usask.ca

Contents: ¹H and ¹³C NMR specta for compounds **3a**, **3b**, **4a**, **4b**, **5a** and **5b**.

Figure S1. ¹H NMR spectrum of **3a** in DMSO-*d*₆. Additional resonances are observed for DMSO (δ 2.50); H₂O (δ 3.33) and tetrahydrofuran (δ 1.76 and 3.60).

Figure S2. ¹³C NMR spectrum of 3a in DMSO- d_6 .

Figure S3. ¹H NMR spectrum of **3b** in DMSO- d_6 . Additional resonances are observed for DMSO (δ 2.50); H₂O (δ 3.33); tetrahydrofuran (δ 1.76 and 3.60) and dichloromethane (δ 5.75).

Figure S4. ¹³C NMR spectrum of **3b** in DMSO- d_6 . Additional resonances are observed for DMSO (δ 39.51) and dichloromethane (δ 55.08).

Figure S5. ¹H NMR spectrum of **4a** in DMSO-*d*₆. Additional resonances are observed for DMSO (δ 2.50); H₂O (δ 3.33) and dichloromethane (δ 5.75).

Figure S6. ¹³C NMR spectrum of 4a in DMSO- d_6 .

Figure S7. ¹H NMR spectrum of **4b** in DMSO- d_6 . Additional resonances are observed for DMSO (δ 2.50); H₂O (δ 3.33) and dichloromethane (δ 5.75)

Figure S8. ¹³C NMR spectrum of **4b** in DMSO- d_6 . Additional resonances are observed for DMSO (δ 39.51) and dichloromethane (δ 54.92).

Figure S9. ¹H NMR spectrum of **5a** in DMSO- d_6 . Additional resonances are observed for DMSO (δ 2.50); H₂O (δ 3.33); dimethylformamide (δ 2.73, 2.88 and 7.95); acetone (δ 2.09) and dichloromethane (δ 5.75)

Figure S10. ¹³C NMR spectrum of **5a** in DMSO- d_6 . Additional resonances are observed for DMSO (δ 39.51) and DMF (δ 35.90 and 30.83).

Figure S11. ¹H NMR spectrum of **5b** in DMSO- d_6 . Additional resonances are observed for DMSO (δ 2.50); H₂O (δ 3.38); dimethylformamide (δ 2.73, 2.88 and 7.95 ppm) and dichloromethane (δ 5.75)

Figure S12. ¹H NMR spectrum of **5b** in DMSO- d_6 . Additional resonances are observed for DMSO (δ 39.51) and dichloromethane (δ 54.88).