Halogen bonding or close packing? Examining the structural landscape in a series of Cu(II)-acac complexes

Christer B. Aakeröy,* Abhijeet S. Sinha, Prashant D. Chopade and John Desper

Department of Chemistry, Kansas State University, Manhattan, KS 66503

aakeroy@ksu.edu

Supporting Information

Table of contents

General experimental details	
Molecular electrostatic potential charge calculations for 3-5	
¹ H and ¹³ C NMR spectra of 2	S4
¹ H and ¹³ C NMR spectra of 3	
¹ H and ¹³ C NMR spectra of 4	S6
¹ H and ¹³ C NMR spectra of 5	

General experimental details

¹H NMR spectra were recorded on a Varian Unity plus 400 MHz spectrometer in CDCl₃. Data is expressed in parts per million (ppm) downfield shift from tetramethylsilane or residual protiosolvent as internal reference and are reported as position (in ppm), multiplicity (s = singlet, d = doublet, t = triplet, m= multiplet), coupling constant (J in Hz) and integration (number of protons). ¹³C nuclear magnetic resonance spectra were recorded on a Varian Unity plus 400 MHz spectrometer in CDCl₃ with complete proton decoupling. Data is expressed in parts per million (ppm) shift relative to CDCl₃ (77.00 ppm) and are reported as position (δ). Melting points were recorded on a Fisher-Johns melting point apparatus and are uncorrected. Infrared spectroscopy (IR) was done on a Nicolet 380 FT-IR. All the chemicals were purchased from Aldrich and used without further purification, unless otherwise noted.

Molecular electrostatic potential charge calculations of 3-5

Charge calculations were performed using Spartan'04 (Wavefunction, Inc. Irvine, CA). All three molecules were optimized using PM3, with the maxima and minima in the electrostatic potential surface $(0.002 \text{ e au}^{-1} \text{ iso-surface})$ determined using a positive point charge in the vacuum as a probe.

Fig. S1 MEP surface calculations of the ligands 3-5.

