ESI for:

The oxidative conversion of the *N*,*S*-bridged complexes [{RhLL'(μ -X)}₂] to [(RhLL')₃(μ -X)₂]⁺ (X = mt or taz): a comparison with the oxidation of *N*,*N*-bridged analogues

Robin J. Blagg, María J. López-Gómez, Jonathan P.H. Charmant, Neil G. Connelly *, John J. Cowell, Mairi F. Haddow, Alex Hamilton, A. Guy Orpen, Thomas Riis-Johannessen and Saowanit Saithong.

Complex	
$[{Rh(cod)(\mu-taz)}_2]$ 2	162.04 (s, taz C^5), 149.97 (s, taz C^3), 79.35 (br s, cod CH), 39.84 (s, taz 4-CH ₂ CH ₂), 31.71 (br s, cod CH ₂), 14.86 (s, taz 3-CH ₃), 11.28 (s, taz 4-C ₂ CH ₃)
[{Rh(CO) ₂ (µ-taz)} ₂] 4	187.64 (d, ${}^{1}J_{CRh}$ 64.5, <i>CO</i>) [†] , 186.14 (d, ${}^{1}J_{CRh}$ 66.2, <i>CO</i>) [‡] , 185.05 (d, ${}^{1}J_{CRh}$ 68.0, <i>CO</i>) [‡] , 182.86 (d, ${}^{1}J_{CRh}$ 69.1, <i>CO</i>) [†] , 162.83 (d, ${}^{2}J_{CRh}$ 2.9, taz C^{5}) [‡] , 162.33 (br s, taz C^{5}) [†] , 151.20 (s, taz C^{3}) [‡] , 150.62 (s, taz C^{3}) [†] , 40.17 (s, taz 4-CH ₂ CH ₃) ^{†‡} , 14.58 (s, taz 3-CH ₃) [‡] , 14.52 (s, taz 3-CH ₃) [†] , 11.50 (s, taz 4-CH ₂ CH ₃) [‡] , 11.20 (s, taz 4-CH ₂ CH ₃) [†] b
$[{Rh(CO)(PPh_3)(\mu-taz)}_2] 6$	162.50 (s, taz C^5), 148.77 (s, taz C^3), 135.10 (d, J_{CP} 13.1, PP h_3), 134.74 (d, J_{CP} 45.4, PP h_3), 130.16 (s, PP h_3), 128.07 (d, J_{CP} 10.0, PP h_3), 39.23 (s, taz 4-CH ₂ CH ₃), 14.83 (s, taz 3-CH ₃), 10.91 (s, taz 4-CH ₂ CH ₃)
$[{Rh[P(OPh)_3]_2(\mu-taz)}_2]$ 7	152.61 {d, J_{CP} 59.2, P(OPh) ₃ }, 152.56 {d, J_{CP} 60.7, P(OPh) ₃ }, 129.41 {d, J_{CP} 43.1, P(OPh) ₃ }, 123.79 {d, J_{CP} 39.2, P(OPh) ₃ }, 121.84 {d, J_{CP} 6.92, P(OPh) ₃ }, 40.14 (s, taz 4-CH ₂ CH ₂), 15.00 (s, taz 3-CH ₃), 11.38 (s, taz 4-CH ₂ CH ₃)

Table S1 ¹³C-{¹H} NMR spectroscopic data ^a for [{RhLL'(μ -taz)}₂].

^a Chemical shift (δ) in ppm, *J* values in Hz, spectra in CD₂Cl₂ at 20 °C. ^b Two isomers present at a ratio of $3^{\dagger}:2^{\ddagger}$.

Complex	
$[{Rh(cod)}_{3}(\mu-taz)_{2}][PF_{6}]$	155.48 (br s, taz C^5), 153.40 (s, taz C^3), 91.20 (d, ${}^1J_{CRh}$ 13.2, cod
9 ⁺ [PF ₆] ⁻	<i>C</i> H), 90.02 (d, ${}^{1}J_{CRh}$ 11.5, cod <i>C</i> H), 86.76 (d, ${}^{1}J_{CRh}$ 10.9, cod <i>C</i> H),
	85.62 (d, ${}^{1}J_{CRh}$ 10.9, cod <i>C</i> H), 82.54 (d, ${}^{1}J_{CRh}$ 11.5, cod <i>C</i> H), 80.05
	(d, ${}^{1}J_{CRh}$ 12.1, cod CH), 41.60 (s, taz 4-CH ₂ CH ₂), 36.60 (s, cod
	<i>C</i> H ₂), 35.15 (s, cod <i>C</i> H ₂), 35.07 (s, cod <i>C</i> H ₂), 29.30 (s, cod <i>C</i> H ₂),
	28.33 (s, cod CH ₂), 28.24 (s, cod CH ₂), 15.01 (s, taz 3-CH ₃), 11.28
	$(s, taz 4-CH_2CH_3)$
$[{Rh(CO)_2}_3(\mu-taz)_2][PF_6]$	183.98 (d, ${}^{1}J_{CRh}$ 68.0, CO), 183.84 (d, ${}^{1}J_{CRh}$ 68.0, CO), 180.66 (d,
$11^{+}[PF_{6}]^{-}$	${}^{1}J_{CRh}$ 68.0, CO), 163.08 (s, taz C ⁵), 158.20 (s, taz C ³), 42.12 (s, taz
	4- <i>C</i> H ₂ CH ₂), 14.76 (s, taz 3- <i>C</i> H ₃), 11.93 (s, taz 4-CH ₂ CH ₃)
$[{Rh(CO)(PPh_3)}_3(\mu-taz)_2][PF_6]$	152.94 (s, taz C ³), 152.42 (s, taz C ³), 135.4-128.6 (m, PPh ₃), 40.40
$13^{+}[PF_{6}]^{-}$	(s, taz 4-CH ₂ CH ₂), 40.28 (s, taz 4-CH ₂ CH ₂), 14.76 (s, taz 3-CH ₃),
	14.33 (s, taz 3-CH ₃), 10.75 (s, taz 4-CH ₂ CH ₃), 10.49 (s, taz 4-
	CH_2CH_3)

Table S2 $^{13}C-\{^{1}H\}$ NMR spectroscopic data ^a for $[\{RhLL'\}_{3}(\mu-taz)_{2}]^{+}$.

^a Chemical shift (δ) in ppm, *J* values in Hz, spectra in CD₂Cl₂ at 20 °C.

Figure S1 Molecular structure of $[{Rh(cod)(\mu-mt)}_2]$ **1**. (Ellipsoids are shown at the 50% probability level; hydrogen atoms are omitted for clarity.)

17 August 2011

Figure S2 Molecular structure of $[{Rh(cod)(\mu-taz)}_2]$ 2 (The second of two inequivalent molecules in the unit cell.)

Figure S3 Molecular structure of $[{Rh(CO)(PPh_3)(\mu-taz)}_2]$ 6.

Figure S4 Structure of the cation $[{Rh(CO)(PPh_3)}_3(\mu-mt)_2]^+ 12^+$.