Electronic Supplementary Information

Structure-Activity Relationships for Organometallic Osmium Arene Phenylazopyridine Complexes with Potent Anticancer Activity

Ying Fu, Abraha Habtemariam, Aida M.B.H.Basri, Darren Braddick, Guy J. Clarkson and Peter J. Sadler^{*}

Contents Synthesis and Characterization of compounds **1-32** Tables S1,- S4 Figures S1 and S2

Synthesis and Characterization

[Os(η^6 -bip)(1-CF₃-4-Cl-azpy)I]PF₆ (1). [Os(η^6 -bip)I₂]₂ (50.0 mg, 0.042 mmol) was dissolved in methanol (40 mL) at 353 K. 1-CF₃-4-Cl-azpy (24.0 mg, 0.084 mmol) in methanol (10 mL) was added drop-wise. The solution was stirred at 353 K for 16 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (27.7 mg, 0.17 mmol) was added. The solution was then left in a freezer at 253 K for 24 h. The dark coloured precipitate was collected by filtration, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 43.1 mg (57.1 %). ESI-MS Calcd for C₂₄H₁₇ClF₃IN₃Os: m/z 758.0, found 757.8. ¹H NMR((CD₃)₂CO): δ 9.80 (s, 1H), 8.71 (d, 1H, J = 2 Hz), 7.96 (d, 2H, J = 8 Hz), 7.72 (t, 1H, J = 8 Hz), 7.56-7.44 (m, 6H), 7.42-7.38 (m, 2H), 7.27 (t, 1H, J = 6 Hz), 7.22 (d, 1H, J = 6 Hz), 6.98 (t, 1H, J = 6 Hz), 6.88 (d, 1H, J = 6 Hz), 6.77 (t, 1H, J = 6 Hz), CHN analysis: Found: C, 31.98%; H, 2.08%; N, 4.34%. Calcd for C₂₄H₁₇ClF₉IN₃OsP: C, 31.96% H, 1.90% N, 4.66%.

[Os(η⁶-*p*-cym)(1-CF₃-4-Cl-azpy)I]PF₆ (2). [Os(η⁶-*p*-cym)I₂]₂ (50.0 mg, 0.043 mmol) was dissolved in methanol (40 mL). 1-CF₃-4-Cl-azpy (24.6 mg, 0.086 mmol) in methanol (10 mL) was added drop-wise, the solution-colour changed from yellow to red brown immediately. The solution was stirred at ambient temperature for 72 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (28.0 mg. 0.17 mmol) was added. The solution was then left in a freezer (253 K) for 24 h. Dark coloured crystals formed which were collected by filtration, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 54.4 mg (71.7 %). ESI-MS Calcd for C₂₂H₂₁ClF₃IN₃Os: m/z 738.0, found 737.8. ¹H MR((CD₃)₂CO): δ 8.91 (s, 1H), 8.41 (d, 2H, , J = 6 Hz), 8.06-7.79 (m, 6H), 7.07 (d, 2H, , J = 6 Hz), 6.46-6.40 (m, 3H), 6.16 (d, 2H, , J = 6 Hz), 2.77 (s, 3H), 2.62-2.52 (m, 1H), 0.91 (d of d, 6H). CHN analysis: Found: C, 29.91%; H, 2.38%; N, 4.83%. Calcd for C₂₂H₂₁ClF₉IN₃OsP: C, 29.96%; H, 2.40%; N, 4.76%.

[Os(η⁶-bip)(1-CF₃-4-Cl-azpy)Cl]PF₆ (3). [Os(η⁶-bip)Cl₂]₂ (50.0 mg, 0.06 mmol) was dissolved in methanol (40 mL) at 353 K. 1-CF₃-4-Cl-azpy (34.3 mg, 0.12 mmol) in methanol (10 mL) was added drop-wise. The solution was stirred at 353 K for 2 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (39.1 mg, 0.24 mmol) was added. The solution was then left in a freezer (253 K) for 24 h. The dark coloured precipitate was collected by filtration, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 71.9 mg (88.7 %). ESI-MS Calcd for C₂₄H₁₇Cl₂F₃N₃Os: m/z 666.0, found 666.0. ¹H NMR((CD₃)₂CO): δ 9.55 (s, 1H), 8.84 (d, 1H, J = 2 Hz), 7.99 (d, 2H, J = 8 Hz), 7.76 (t, 1H, J = 8 Hz), 7.66-7.54 (m, 6H), 7.50-7.47(m, 2H), 7.07 (d, 1H, J = 6 Hz), 6.98-6.92 (m, 3H), 6.54-6.49 (m, 1H). CHN analysis: Found: C, 36.43%; H, 2.07%; N, 5.17%. Calcd for C₂₄H₁₇Cl₂F₉N₃OsP: C, 35.56%; H, 2.11%; N, 5.18%.

[Os(η⁶-*p*-cym)(1-CF₃-4-CI-azpy)CI]PF₆ (4). $[Os(η^6-$ *p* $-cym)Cl_2]_2$ (50.0 mg, 0.063 mmol) was dissolved in methanol (40 mL). 1-CF₃-4-CI-azpy (36.1 mg, 0.126 mmol) in methanol (10 mL) was added drop-wise, the solution-colour changed from yellow to red brown immediately. The solution was stirred at ambient temperature for 12 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (41.2 mg, 0.25 mmol) was added. The solution was then left in the freezer (253 K) for 24 h. The dark coloured precipitate was collected by filtration, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 69.2 mg (69.5 %). ESI-MS Calcd for C₂₂H₂₁Cl₂F₃N₃Os: m/z 646.1, found 646.0. ¹H NMR((CD₃)₂CO): δ 9.80 (s, 1H), 8.88 (s, 1H), 8.18 (m, 2H), 7.96-7.81 (m, 3H), 7.03 (d, 1H, J = 8 Hz), 6.68 (d, 1H, J = 8 Hz), 6.56 (m, 2H), 2.80 (s, 3H), 2.58-2.49 (m, 1H), 0.98 (d of d, 6H). CHN analysis: Found: C, 33.26%; H, 2.59%; N, 5.24%. Calcd for C₂₂H₂₁Cl₂F₉N₃OsP: C, 33.43%; H, 2.68%; N, 5.32%.

 $[Os(\eta^6-p-cym)(1-Cl-azpy)I]PF_6$ (5). $[Os(\eta^6-p-cym)I_2]_2$ (50.0 mg, 0.043 mmol) was dissolved in methanol (30 mL). 1-Cl-azpy (18.7 mg, 0.086 mmol) in methanol (10 mL) was added drop-wise. The solution was stirred at 353 K for 4 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (28.0 mg, 0.17 mmol) was added. The solution was then left in the freezer (253 K) for 24 h. The dark coloured precipitate was collected by filtration, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 28.0 mg (40.0 %). ESI-MS Calcd for $C_{21}H_{22}CIIN_3Os: m/z$ 670.0, found 669.9. ¹H NMR((CD₃)₂CO): δ 9.01 (d, 1H, J = 6 Hz), 8.20 (d, 1H, J = 8 Hz), 8.14-8.02 (m, 3H), 7.81 (m, 1H), 7.14 (d, 2H, J = 9 Hz), 6.61 (m, 2H), 6.46 (d, 1H, J = 6 Hz), 6.16 (m, 4H), 2.39 (s, 3H), 2.69-2.64 (m, 1H), 1.03 (d of d, 6H). CHN analysis: Found: C, 30.38%; H, 2.62%; N, 5.11%. Calcd for $C_{21}H_{22}CIF_6IN_3OsP: C$, 30.99%; H, 2.72%; N, 5.16%.

[Os(\eta^6-bip)(1-CI-azpy)I]PF_6 (6). [Os(η^6 -bip)I₂]₂ (30.0 mg, 0.025 mmol) was dissolved in methanol (40 mL) at 353 K. 1-CI-azpy (10.8 mg, 0.050 mmol) in methanol (10 mL) was added drop-wise. The solution was stirred at 353 K for 2 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (16.3 mg, 0.10 mmol) was added. The solution was then left in a freezer (253 K) for 24 h. The dark coloured precipitate was collected by filtration, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 22.0 mg (52.8 %). ESI-MS Calcd for C₂₃H₁₈CIIN₃Os: m/z 690.0, found 689.9. ¹H NMR((CD₃)₂CO): δ 8.56 (d, 1H, J = 6 Hz), 8.33 (t, 1H, J = 8 Hz), 8.19 (d, 1H, J = 6 Hz), 7.87 (d, 2H, J = 8 Hz), 7.66 (t, 1H, J = 8 Hz), 7.52-7.39 (m, 7H), 7.19 (d, 1H, J = 6 Hz), 7.00 (t, 2H, J = 6 Hz), 6.99-6.78 (m, 2H). CHN analysis: Found: C, 32.82%; H, 2.08%; N, 4.75%. Calcd for C₂₃H₁₈CIF₆IN₃OsP: C, 33.12%; H, 2.18%; N, 5.04%.

 $[Os(\eta^6-p-cym)(1-Cl-azpy)Cl]PF_6$ (7). $[Os(\eta^6-p-cym)Cl_2]_2$ (50.0 mg, 0.063 mmol) was dissolved in methanol (30 mL). 1-Cl-azpy (27.4 mg, 0.126 mmol) in methanol (10 mL) was added drop-wise, the solution-colour changed from yellow to red immediately. The solution was stirred at ambient temperature for 4 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (41.2 mg, 0.25 mmol) was added. The solution was then left in the freezer (253 K) for 24 h. The dark coloured precipitate which was collected by filtration, washed with cold ethanol and diethyl

ether, then finally dried *in vacuo*. Yield: 86.3 mg (94.8 %). ESI-MS Calcd for $C_{21}H_{22}Cl_2N_3Os: m/z$ 578.1, found 578.1. ¹H NMR((CD₃)₂CO): δ 8.94 (d, 1H, J = 8 Hz), 8.41 (t, 1H, J = 8 Hz), 8.30(d, 1H, J = 8 Hz), 8.13(d, 2H, J = 8 Hz), 7.76 (m, 3H), 7.06 (d, 1H, J = 6 Hz), 6.42 (d, 1H, J = 6 Hz), 6.37 (d, 1H, J = 6 Hz), 6.16 (d, 1H, J = 6 Hz), 2.62-2.54 (m, 1H), 2.46 (s, 3H), 0.99 (d of d, 6H). CHN analysis: Found: C, 34.91%; H, 3.02%; N, 5.75%. Calcd for $C_{21}H_{22}Cl_2F_6N_3OsP: C, 34.91\%; H, 3.07\%; N, 5.82\%.$

[Os(η^{6} -bip)(1-Cl-azpy)Cl]PF₆ (8). [Os(η^{6} -bip)Cl₂]₂ (50.0 mg, 0.060 mmol) was dissolved in methanol (40 mL) at 353 K. 1-Cl-azpy (26.1 mg, 0.12 mmol) in methanol (10 mL) was added drop-wise. The solution was stirred at 353 K for 1 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (39.1 mg, 0.24 mmol) was added. The solution was then left in the freezer (253K) for 24 h. Dark coloured powder was precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 27.8 mg (31.2 %). ESI-MS Calcd for C₂₃H₁₈Cl₂N₃Os: m/z 598.0, found 598.0. ¹H NMR((CD₃)₂CO): ¹H NMR((CD₃)₂CO): δ 8.92 (d, 1H, J = 6 Hz), 8.43 (t, 1H, J = 8 Hz), 8,26 (d, 1H, J = 6 Hz), 7.94 (d, 2H, J = 8 Hz), 7.72 (t, 1H, J = 8 Hz), 7.62-7.35 (m, 7H), 7.06 (t, 11H, J = 6 Hz), 6.94 (t, 2H, J = 6 Hz), 6.74 (t, 1H, J = 6 Hz), 6.50 (t, 1H, J = 6 Hz), CHN analysis: Found: C, 36.95%; H, 2.39%; N, 5.59%. Calcd for C₂₃H₁₈Cl₂F₆N₃OsP: C, 37.20%; H, 2.44% ; N, 5.66%.

[Os(η^6 -bip)(2-F-azpy)I]PF₆ (9). [Os(η^6 -bip)I₂]₂ (25.0 mg, 0.021 mmol) was dissolved in methanol (20 mL) at 313 K. 2-F-Azpy (8.4 mg, 0.042 mmol) in methanol (10 mL) was added drop-wise, the solution-colour changed from yellow to brown immediately. The solution was heated under reflux (353K) for 12 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (13.7 mg, 0.084 mmol) was added. The solution was then left in a freezer (253 K) for 24 h. Dark coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 15.5 mg (45.0 %). ESI-MS Calcd for C₂₃H₁₈FIN₃Os: m/z 674.0, found 674.1. ¹H NMR((CD₃)₂CO): δ 9.50 (t, 1H, J = 2 Hz), 8.88 (d of d, 1H), 8,91 (d of d, 2H), 8,32(d of t, 1H), 8,02 (d of d, 1H), 7.95-7.92 (m, 2H), 7.73-7.41 (m, 5H), 7.13-

7.09 (m, 2H), 6.96 (t, 1H, J = 7 Hz). 6.79 (d, 1H, J = 7 Hz), 6.65 (t, 1H, J = 7 Hz). CHN analysis: Found: C, 34.17%; H, 2.28%; N, 5.04%. Calcd for $C_{23}H_{18}F_7IN_3OsP$: C, 33.79%; H, 2.22%; N, 5.14%.

[Os(η⁶-bip)(2-F-Azpy)CI]PF₆ (10) $[Os(η⁶-bip)Cl_2]_2$ (50.0 mg, 0.06 mmol) was dissolved in methanol (40 mL) and water (10 mL) mixture at 353 K. 2-F-Azpy (24.1 mg, 0.12 mmol) in methanol (10 mL) was added drop-wise. The solution was heated under reflux (353K) for 4 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (97.8mg, 0.6 mmol) was added. The solution was then left in a freezer (253 K) for 24 h. Dark coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 37.5 mg (86.1 %). ESI-MS Calcd for C₂₃H₁₈ClFN₃Os: m/z 582.1, found 582.0. ¹H NMR((CD₃)₂CO): δ 9.53 (t, 1H, J = 2 Hz), 9.08 (d of d, 1H), 8,40 (d of t, 2H), 7.94 (d, 2H J = 8 Hz), 7.73 (t, 1H, J = 8 Hz), 7.63-7.48 (m, 7H), 7.97-7.32 (m, 2H), 6.87 (t, 1H, J = 6 Hz). 6.78 (d, 1H, J = 6 Hz), 6.47 (t, 1H, J = 6 Hz). CHN analysis: Found: C, 37.69%; H, 2.33%; N, 5.87%. Calcd for C₂₃H₁₈ClF₇N₃OsP: C, 38.05%; H, 2.50%; N, 5.79%.

[Os(η⁶-*p***-cym)(2-F-azpy)I]PF₆ (11).** [Os(η⁶-*p* $-cym)I_2]_2$ (50.0 mg, 0.043 mmol) was dissolved in methanol (40 mL) at 313 K. 2-F-azpy (34.8 mg, 0.17 mmol) in methanol (10 mL) was added drop-wise. The solution was stirred at 313 K for 4 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (70.0 mg, 0.43 mmol) was added. The solution was then left in a freezer (253 K) for 24 h. Dark coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 38.7 mg (48.5 %). ESI-MS Calcd for C₂₁H₂₂FIN₃Os: m/z 654.0, found 654.0. ¹H NMR((CD₃)₂CO): δ 9.70 (s, 1H), 9.13 (d, 1H, J = 6 Hz), 8.34 (t, 1H, J = 6 Hz), 8.17 (d, 2H, J = 6 Hz), 7.82-7.73 (m, 3H), 6.84 (d, 1H, J = 6 Hz), 6.52 (d, 1H, J = 6 Hz), 6.45 (d, 1H, J = 6 Hz), 6.35 (d, 1H, J = 6 Hz), 2.83 (s, 3H), 2.65-2.61 (m, 1H), 1.02 (dd, 6H). CHN analysis: Found: C, 32.27%; H, 2.81%; N, 5.21%. Calcd for C₂₁H₂₂F₇IN₃OsP: C, 31.63%; H, 2.78%; N, 5.27%.

[Os(η⁶-*p*-cym)(2-F-Azpy)Cl]PF₆ (12). [Os(η⁶-*p*-cym)Cl₂]₂ (25.0 mg, 0.032 mmol) was dissolved in methanol (20 mL) at 313 K. 2-F-azpy (12.7 mg, 0.063 mmol) in methanol (10 mL) was added drop-wise. The solution was stirred at ambient temperature for 4 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (20.5 mg, 0.13 mmol) was added. The solution was then left in the freezer (253 K) for 24 h. Dark coloured powder was precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 11.9 mg (52.7 %). ESI-MS Calcd for C₂₁H₂₂ClFN₃Os: m/z 561.1, found 561.0. ¹H NMR((CD₃)₂CO): δ 9.70 (s, 1H), 9.12 (d, 1H, J = 6 Hz), 8.43 (t, 1H, J = 6 Hz), 8.17 (d, 2H, J = 6 Hz), 7.65-7.58 (m, 3H), 6.87 (d, 1H, J = 6 Hz), 6.80 (d, 1H, J = 6 Hz), 6.51 (d, 1H, J = 6 Hz), 6.42 (d, 1H, J = 6 Hz), 2.81 (s, 3H), 2.53-2.49 (m, 1H), 0.97 (dd, 6H). CHN analysis: Found: C, 35.07%; H, 2.98%; N, 5.71%. Calcd for C₂₁H₂₂ClF₇N₃OsP: C, 35.72%; H, 3.14%; N, 5.95%.

[Os(η^6 -bip)(2-Cl-azpy)I]PF₆ (13). [Os(η^6 -bip)I₂]₂ (30.0 mg, 0.025 mmol) was dissolved in methanol (10 mL) at 353 K and heated under reflux for 1 h. 2-Cl-azpy (10.8mg, 0.050 mmol) in methanol (10 mL) was added drop-wise. The solution was stirred at 353 K for 2 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (16.3 mg, 0.10 mmol) was added. The solution was then left in the freezer (253 K) for 24 h. The dark coloured crystalline precipitate was collected by filtration, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 24.5 mg (29.3 %). ESI-MS Calcd for C₂₃H₁₈ClIN₃Os: m/z 690.0, found 689.9. ¹H NMR((CD₃)₂CO): δ 9.46 (d, 1H, J = 3 Hz), 8.99 (d, 1H, J = 9 Hz), 8,40 (d of d, 1H), 7.91 (d, 2H, J = 8 Hz), 7.69 (t, 1H, J = 8 Hz), 7.55-7.47 (m, 3H), 7.44-7.39(m, 4H), 7.13 (d, 1H, J = 6 Hz), 7.09 (t, 1H, J = 6 Hz), 6.89 (t, 1H, J = 6 Hz), 6.82 (d, 1H, J = 6 Hz), 6.72 (t, 1H, J = 6 Hz). CHN analysis: Found: C, 32.92%; H, 2.06%; N, 5.03%. Calcd for C₂₃H₁₈ClF₆IN₃OsP: C, 33.21%; H, 2.18%; N, 5.04%.

 $[Os(\eta^{6}-p-cym)(2-Cl-azpy)I]PF_{6}$ (14). $[Os(\eta^{6}-p-cym)I_{2}]_{2}$ (50.0 mg, 0.043 mmol) was dissolved in methanol (40 mL) at 313 K. 2-Cl-azpy (18.8 mg, 0.0865 mmol) in methanol (10

mL) was added drop-wise, the solution-colour changed from yellow to red immediately. The solution was stirred at ambient temperature for 3 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (28.2 mg, 0.173 mmol) was added. The solution was then left in a freezer (253 K) for 24 h. The dark coloured precipitate was collected by filtration, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 45.7 mg (64.8 %). ESI-MS Calcd for $C_{21}H_{22}CIIN_3Os$: m/z 670.0, found 669.9. ¹H NMR((CD₃)₂CO): δ 9.71 (s, 1H), 9.05 (d, 1H, J = 9 Hz), 8.45 (d, 1H, J = 6 Hz), 8.16 (d, 2H, J = 6 Hz), 7.83-7.71 (m, 3H), 6.88 (d, 1H, J = 6 Hz), 6.57 (d, 1H, J = 6 Hz), 6.47 (d, 1H, J = 6 Hz), 6.35 (d, 1H, J = 6 Hz), 2.78 (s, 3H), 2.69-2.65 (m, 1H), 1.00 (d of d, 6H). CHN analysis: Found: C, 30.95%; H, 2.60%; N, 5.12%. Calcd for $C_{21}H_{22}CIF_6IN_3OsP$: C, 30.99%; H, 2.72%; N, 5.16%.

[Os(η⁶-bip)(2-Cl-azpy)Cl]PF₆ (15). [Os(η⁶-bip)Cl₂]₂ (50.0 mg, 0.060 mmol) was dissolved in methanol (20 mL) at 353 K and heated under reflux and N₂ for 1 h. 2-Cl-azpy (26.1 mg, 0.120 mmol) in methanol (10 mL) was added drop-wise. The solution was stirred at 353 K for 1 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (39.1 mg, 0.24 mmol) was added. The solution was then left in a freezer (253 K) for 24 h. Dark coloured crystals formed which were collected by filtration, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 41.3 mg (46.3 %). ESI-MS Calcd for C₂₃H₁₈Cl₂N₃Os: m/z 598.0, found 598.0. ¹H NMR((CD₃)₂CO): δ 9.49 (d, 1H, J = 3 Hz), 8.97 (d, 1H, J = 9 Hz), 8,48 (d of d, 1H), 7.92 (d, 2H, J = 8 Hz), 7.70 (t, 1H, J = 8 Hz), 7.61-7.46 (m, 3H), 7.44-7.38(m, 4H), 6.96 (d, 1H, J = 6 Hz), 6.89 (d, 1H, J = 6 Hz), 6.85 (t, 1H, J = 6 Hz), 6.79 (t, 1H, J = 6 Hz), 6.46 (t, 1H, J = 6 Hz). CHN analysis: Found: C, 36.92%; H, 2.32%; N, 5.56%. Calcd for C₂₃H₁₈Cl₂F₆N₃OsP: C, 37.20%; H, 2.44%; N, 5.66%.

 $[Os(\eta^6-p-cym)(2-Cl-azpy)Cl]PF_6$ (16). $[Os(\eta^6-p-cym)Cl_2]_2$ (50.0 mg, 0.063 mmol) was dissolved in methanol (40 mL) at 313 K. 2-Cl-azpy (27.5 mg, 0.126 mmol) in methanol (10 mL) was added drop-wise, the solution-colour changed from yellow to red immediately. The solution was stirred at ambient temperature for 24 h. The volume was reduced to about 10

mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (41.2 mg, 0.253 mmol) was added. The solution was then left in a freezer (253 K) for 24 h. Dark coloured crystals formed which were collected by filtration, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 41.2 mg (45.2 %). ESI-MS Calcd for $C_{21}H_{22}Cl_2N_3Os: m/z$ 578.1, found 578.0. ¹H NMR((CD₃)₂CO): δ 9.68 (s, 1H), 9.01 (d, 1H, J = 9 Hz), 8.45 (d of d, 1H), 8.13 (d, 2H, J = 6 Hz), 7.83-7.51 (m, 3H), 6.89 (d, 1H, J = 6 Hz), 6.52 (d, 1H, J = 6 Hz), 6.39-6,34 (m, 2H), 2.80 (s, 3H), 2.54-2.46 (m, 1H), 0.98 (d of d, 6H). CHN analysis: Found: C, 34.80%; H, 2.98%; N, 5.78%. Calcd for $C_{21}H_{22}Cl_2F_6N_3OsP: C$, 34.91%; H, 3.07% N, 5.82%.

[Os(bip)(2-Br-azpy)I]PF₆ (17). [Os(bip)I₂]₂ (30.0 mg, 0.025 mmol) was dissolved in methanol (30 mL) and water (10 mL), and the solution was heated under reflux (T=353 K) for 1.5 h. 2-Br-azpy (13.1 mg, 0.05 mmol) in methanol (10 mL) was added drop-wise, the solution-colour changed from orange to brown immediately. The solution was stirred and heated under reflux for 1.5 h further. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (16.4 mg, 0.2 mmol) was added. The solution was then left in a fridge for 24 h. The dark coloured precipitate was collected by filtration, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 22.5 mg (51.2 %). ESI-MS Calcd for C₂₃H₁₈BrIN₃Os: m/z 733.9, found 733.7. ¹H NMR((CD₃)₂CO): δ 9.50 (d, 1H, J = 2 Hz), 8.91 (d, 1H, J = 9 Hz), 8.52 (d of d, 1H), 7.92 (d, 2H, J = 8 Hz), 7.69 (t, 1H, J = 8 Hz), 7.55-7.44 (m, 2H), 7.43-7.39 (m, 5H), 7.16-7.19 (m, 2H), 6.87 (t, 1H, J = 6 Hz), 6.81 (d, 1H, J = 6 Hz), 6.71 (t, 1H, J = 6 Hz). CHN analysis: Found: C, 31.94%; H, 1.97%; N, 4.74%. Calcd for C₂₃H₁₈BrF₆IN₃OsP: C, 31.45%; H, 2.07% N, 4.78%.

 $[Os(\eta^6-p-cym)(2-Br-Azpy)I]PF_6$ (18). $[Os(\eta^6-p-cym)I_2]_2$ (20.0 mg, 0.017 mmol) was dissolved in methanol (40 mL). 2-Br-Azpy (9.3 mg, 0.035 mmol) in methanol (10 mL) was added drop-wise. The solution colour changed from yellow to dark red immediately, it was stirred at ambient temperature for 16 h. The volume was reduced to ca 5 mL by removal of methanol on a rotary evaporator and ammonium hexafluorophosphate (11.3 mg, 0.069 mmol)

was added. Then the solution was left in a freezer (253 K) for 24 h. A dark coloured solid precipitated, which was filtered off, washed with diethyl ether, dried *in vacuo*. Yield: 16.2 mg (54.7%). Anal. ESI-MS Calcd for $C_{21}H_{22}BrIN_3Os$: m/z 714.0, found 713.9. ¹H NMR((CD₃)₂CO) δ 9.79 (s, 1H), 8.95 (d, 1H, J = 9 Hz), 8.67 (d, 1H, J = 6 Hz), 8.16 (d, 1H, J = 7 Hz), 7.86-7.78 (m, 3H), 6.93 (d, 1H, J = 6 Hz), 6.57 (d, 1H, J = 6 Hz), 6.39 (m, 2H), 2.56-2.53 (m, 1H), 2.46 (s, 3H), 1.00 (d of d, 6H). CHN analysis Found: C, 29.98%; H, 2.85%; N, 4.72%, Calcd for $C_{21}H_{22}BrIF_6N_3OsP$: C, 29.38%; H, 2.58%; N, 4.90%.

[Os(bip)(2-Br-azpy)Cl]PF₆ (19). [Os(bip)Cl₂]₂ (30.0 mg, 0.036 mmol) was dissolved in methanol (30 mL) and water (10 mL), and the solution was heated under reflux (T=353 K) for 1 h. 2-Br-azpy (18.9 mg, 0.072 mmol) in methanol (10 mL) was added drop-wise, the solution-colour changed from orange to brown immediately. The solution was stirred and heated under reflux for 1 h further. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (59.0 mg, 0.36 mmol) was added. The solution was then left in a fridge for 24 h. The dark coloured precipitate was collected by filtration, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 19.2 mg (33.8 %). ESI-MS Calcd for C₂₃H₁₈BrClN₃Os: m/z 642.0, found 641.9. ¹H NMR((CD₃)₂CO): δ 9.54 (d, 1H, J = 2 Hz), 8.88 (d, 1H, J = 9 Hz), 8.61 (d of d, 1H), 7.72 (d, 2H, J = 8 Hz), 7.61 (t, 1H, J = 8 Hz), 7.50-7.44 (m, 2H), 7.43-7.36 (m, 5H), 6.98 (d, 1H, J = 6 Hz), 7.89-7.80 (m, 3H), 6.47 (t, 1H, J = 6 Hz). CHN analysis: Found: C, 34.84%; H, 2.15%; N, 5.29%. Calcd for C₂₃H₁₈BrClF₆N₃OsP: C, 35.10%; H, 2.31% N, 5.34%.

 $[Os(\eta^6-p-cym)(2-Br-Azpy)Cl]PF_6$ (20). $[Os(\eta^6-p-cym)Cl_2]_2$ (30.0 mg, 0.038 mmol) was dissolved in methanol (20 mL); 2-Br-Azpy (20.0 mg, 0.076 mmol) in methanol (10 mL) was added drop-wise, the solution colour changed from yellow to dark red immediately. The solution was stirred at ambient temperature for 3 h. The volume was reduced to ca. 5 mL by removal of methanol on a rotary evaporator and ammonium hexafluorophosphate (24.7 mg, 0.15 mmol) was added. Then the solution was left in the freezer (253 K) for 24 h; A dark colour crystalline precipitated which was filtered off and washed with diethyl ether, then dried *in vacuo*. Yield: 39.2 mg (67.3%). Anal. ESI-MS Calcd for C₂₁H₂₂BrClN₃Os: m/z

622.0, found 622.1. ¹H NMR((CD₃)₂CO) δ 9.83 (s, 1H), 9.00 (d, 1H, J = 9 Hz), 8.61 (d, 1H, J = 6 Hz), 8.22 (d, 1H, J = 6 Hz), 7.80-7.78 (m, 3H), 6.94 (d, 1H, J = 6 Hz), 6.63 (d, 1H, J = 6 Hz), 6.41 (d, 1H, J = 6 Hz), 6.39 (d, 1H, J = 6 Hz), 2.80 (s, 3H), 2.67-2.64 (m, 1H), 1.02 (d of d, 6H). CHN analysis Found: C, 32.85%; H, 2.82%; N, 5.39%, Calcd for C₂₁H₂₂BrClF₆N₃OsP: C, 32.89%; H, 2.89%; N, 5.48%.

[Os(η^6 -bip)(2-I-azpy)I]PF₆ (21). [Os(η^6 -bip)I₂]₂ (26.0 mg, 0.022 mmol) was dissolved in methanol (20 mL) and water (5 mL), and the solution was heated under reflux (T=353 K) for 1 h. 2-Br-azpy (13.4 mg, 0.043 mmol) in methanol (5 mL) was added drop-wise, the solution-colour changed from orange to brown immediately. The solution was stirred and heated under reflux for 1 h further. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (14.3 mg, 0.088 mmol) was added. The solution was then left in a fridge (253 K) for 24 h. Dark coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 19.2 mg (52.0 %). ESI-MS Calcd for C₂₃H₁₈F₆IN₃Os: m/z 781.9, found 781.8. ¹H NMR((CD₃)₂CO): δ 9.54 (d, 1H, J = 2 Hz), 8.74 (d, 1H, J = 9 Hz), 8,64 (d of d, 1H), 7.92 (d, 2H, J = 8 Hz), 7.70 (t, 1H, J = 8 Hz), 7.52-7.46 (m, 3H), 7.44-7.41(m, 4H), 7.15 (d, 1H, J = 6 Hz), 7.09 (d, 1H, J = 6 Hz), 6.83-6.78 (m, 2H), 6.69 (t, 1H, J = 6 Hz). CHN analysis: Found: C, 29.90%; H, 1.87%; N, 4.51%. Calcd for C₂₃H₁₈F₆I₂N₃OsP: C, 29.85%; H, 1.96% N, 4.54%.

[Os(η^6 -*p*-cym)(2-I-azpy)I]PF₆ (22). [Os(η^6 -*p*-cym)I₂]₂ (25.0 mg, 0.022 mmol) was dissolved in methanol (40 mL) at 313 K. 2-I-Azpy (13.4 mg, 0.043 mmol) in methanol (10 mL) was added drop-wise, the solution-colour changed from orange to blue immediately. The solution was stirred at ambient temperature for 4 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (14.0 mg, 0.086 mmol) was added. The solution was then left in a freezer (253 K) for 24 h. Dark coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 27.4 mg (70.4 %). ESI-MS Calcd for C₂₁H₂₂F₆IN₃Os: m/z 762.0, found 761.8. ¹H NMR((CD₃)₂CO): δ 9.89 (s, 1H), 9.13 (m, 1H), 8.71 (d of d, 1H), 8.18 (m, 2H), 7.82-7.73 (m, 2H), 6.91 (d, 1H, J = 6 Hz), 6.59 (d, 1H, J = 6 Hz), 6.41 (d, 1H, J = 6 Hz), 6.35 (d, 1H, J = 6 Hz), 2.83 (s, 3H), 2.65-2.61 (m, 1H), 1.02 (d of d, 6H). CHN analysis: Found: C, 27.62%; H, 2.27%; N, 4.64%. Calcd for $C_{21}H_{22}F_6I_2N_3OsP$: C, 27.86%; H, 2.45% N, 4.64%.

[Os(η⁶-bip)(3-Cl-Azpy)I]PF₆ (23). $[Os(η⁶-bip)I_2]_2$ (30.0 mg, 0.025 mmol) in methanol (30 mL) and water (10 mL) was heated under refluxed (T=348 K) for 1.5 h. 3-Cl-Azpy (11.2 mg, 0.052 mmol) in methanol (10 mL) was added drop-wise. The solution colour changed from orange to dark red immediately, it was stirred at 348 K for 1.5 h. The volume was reduced to ca. 10 mL by removal of methanol on a rotary evaporator and ammonium hexafluorophosphate (41.0 mg, 0.25 mmol) was added. Then the solution was left in a fridge for 24 h. A dark colour powder precipitated, which was filtered off, washed with cold methanol and diethyl ether, dried *in vacuo*. Yield: 28.4 mg (68.1%). Anal. ESI-MS Calcd for C₂₃H₁₈ClIN₃Os: m/z 690.0, found 689.9. ¹H NMR((CD₃)₂CO) δ 9.41 (d, 1H, J = 6 Hz), 9.14 (d, 1H, J = 2 Hz), 7.96-7.90 (m, 3H), 7.74 (t, 1H, J = 5 Hz), 7.59-7.41 (m, 7H), 7.13 (d, 1H, J = 6 Hz), 7.05 (t, 1H, J = 6 Hz), 6.92-6.85 (m, 2H), 6.74 (t, 1H, J = 6 Hz). CHN analysis Found: C, 33.12%; H 2.18%; N 5.04%, Calcd for C₂₃H₁₈ClF₆IN₃OsP: C, 32.89%; H, 2.89%; N, 5.48%.

[Os(η⁶-*p*-cym)(3-Cl-Azpy)I]PF₆ (24). [Os(η⁶-*p*-cym)I₂]₂ (30.0 mg, 0.026 mmol) was dissolved in methanol (50 mL) . 3-Cl-Azpy (12.5 mg, 0.058 mmol) in methanol (10 mL) was added drop-wise. The solution colour changed from yellow to dark red immediately. It was then stirred at ambient temperature for 5 h. The volume was reduced to ca. 10 mL by removal of methanol on a rotary evaporator and ammonium hexafluorophosphate (41.8 mg, 0.26 mmol) was added. Then the solution was left in a freezer (253 K) for 24 h. Dark coloured crystals formed, which were filtered off, washed with diethyl ether, finally dried *in vacuo*. Yield: 28.4 mg (67.1%). Anal. ESI-MS Calcd for C₂₁H₂₂ClIN₃Os: m/z 670.0, found 670.0. ¹H NMR((CD₃)₂CO) δ 9.59 (d, 1H, J = 6 Hz), 9.16 (s, 1H), 8.18 (m, 2H), 7.96 (m, 1H), 7.84 (s, 1H), 7.76 (t, 3H), 6.82 (d, 1H, J = 6 Hz), 6.48-6.45 (m, 2H), 6.36 (d, 1H, J = 6 Hz), 2.73 (s, 3H), 2.66 (m, 1H), 1.03 (d of d, 6H). CHN analysis Found: C, 30.94%; H, 2.60%; N, 5.12%;

Calcd for $C_{21}H_{22}ClF_6IN_3OsP$: C, 30.99%; H, 2.72%; N, 5.16%. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution of complex 10 at 277 K.

[Os(η^{6} -bip)(3-Cl-Azpy)Cl]PF₆ (25). [Os(η^{6} -bip)Cl₂]₂ (30.0 mg, 0.036 mmol) in methanol (30 mL) and water (10 mL) was heated under reflux (T=348 K) for 1 h. 3-Cl-Azpy (16.1 mg, 0.073 mmol) in methanol (10 mL) was added drop-wise, the solution colour changed from orange to dark red immediately. The solution was stirred at 348 K for 2 h. The volume was reduced to ca. 10 mL by removal of methanol on a rotary evaporator and ammonium hexafluorophosphate (59.0 mg, 0.36 mmol) was added. Then the solution was left in the fridge for 24 h; A dark coloured powder precipitated, which was filtered off and washed with cold methanol and diethyl ether, then dried *in vacuo*. Yield: 31.0 mg (57.9%). Anal. ESI-MS Calcd for C₂₃H₁₈Cl₂N₃Os: m/z 597.6, found 598.0. ¹H NMR((CD₃)₂CO) δ 9.05 (d, 1H, J = 6 Hz), 8.87 (s, 1H), 7.73 (d, 1H, J = 6 Hz), 7.39 (d, 2H, J = 6 Hz), 7.28 (m, 1H), 7.17 (t, 2H, J = 6 Hz), 7.08-7.02 (m, 5H), 6.49 (d, 1H, J = 6 Hz). CHN analysis Found: C, 37.06%; H, 2.38%; N, 5.58%, Calcd for C₂₃H₁₈Cl₂F₆N₃OsP: C, 37.20%; H, 2.44%; N, 5.66%.

[Os(η⁶-*p***-cym)(3-Cl-Azpy)Cl]PF₆ (26).** [Os(η⁶-*p*-cym)Cl₂]₂ (30.0 mg, 0.038 mmol) was dissolved in methanol (20 mL); 3-Cl-Azpy (16.7 mg, 0.077 mmol) in methanol (10 mL) was added drop-wise, the solution colour changed from yellow to dark red immediately. The solution was stirred at ambient temperature for 3 h. The volume was reduced to ca. 5 mL by removal of methanol on a rotary evaporator and ammonium hexafluorophosphate (25.0 mg, 0.15 mmol) was added. Then the solution was left in the freezer (253 K) for 24h; Dark coloured crystals formed which were filtered off and washed with diethyl ether, dried *in vacuo*. Yield: 39.1 mg (71.2%). Anal. ESI-MS Calcd for C₂₁H₂₂Cl₂N₃Os [M] m/z 578.1, found 578.1. ¹H NMR((CD₃)₂CO) δ 9.60 (d, 1H, J = 6 Hz), 9.13 (s, 1H), 8.15 (d, 2H, J = 7 Hz), 8.11 (m, 1H), 7.86-7.79 (m, 3H), 6.84 (d, 1H, J = 6 Hz), 6.46 (d, 1H, J = 6 Hz), 6.38 (s, 2H), 2.56-2.53 (m, 1H), 2.43 (s, 3H), 1.00 (d of d, 6H). CHN analysis Found: C, 34.80%; H, 2.96%; N, 5.79%, Calcd for C₂₁H₂₂Cl₂F₆N₃OsP: C, 34.91%; H, 3.07%; N, 5.82%.

[Os(η⁶-bip)(Abpy)I]PF₆ (27). [Os(η⁶-bip)I₂]₂ (50.1 mg, 0.0418 mmol) and Abpy (19.5 mg, 0.105 mmol) were dissolved methanol (30 mL) and heated under reflux at 353 K for 3 h. The volume was reduced to ca. 10 mL by removal of methanol on a rotary evaporator. Ammonium hexafluorophosphate (29.3 mg, 0.16 mmol) was added. Then the solution was left in a freezer (253 K) for 24 h. A dark coloured precipitate formed, which was filtered off, washed with cold ethanol and diethyl ether, finally dried *in vacuo*. Yield: 48.2 mg (72.0%). Anal. ESI-MS Calcd for C₂₂H₁₈IN₄Os: m/z 657.0, found 656.9. ¹H NMR((CD₃)₂CO) δ 9.44 (d, 1H J = 6 Hz), 9.07 (m, 1H), 8.76 (d, 1H J = 6 Hz), 8.38 (t, 1H, J = 8 Hz), 8.14 (m, 2H), 7.76 (m, 2H), 7.61 (m, 2H), 7.45 (m, 3H). 7.25 (d, 1H, J = 6 Hz), 7.13 (d, 1H, J = 6 Hz), 7.03 (t, 1H, J = 6 Hz), 6.95 (t, 1H, J = 6 Hz), 6.82 (t, 1H, J = 6 Hz). CHN analysis Found: C, 32.59%; H, 2.17%; N, 7.07%, Calcd for C₂₀H₂₂F₆IN₄OsP: C, 33.01%; H, 2.27%; N, 7.00%.

[Os(η^6 -*p*-cym)(Abpy)I]PF₆ (28). [Os(η^6 -*p*-cym) I₂]₂ (40.0 mg, 0.035 mmol) was dissolved in 50 mL of methanol at 313 K; Abpy (16.1 mg, 0.087 mmol) in methanol (5 mL) was added drop-wise, the solution colour changed from orange to pink immediately; and was stirred at ambient temperature for 16 h. The volume was reduced to ca. 10 mL by removal of methanol on a rotary evaporator. Ammonium hexafluorophosphate (56.2 mg, 0.35 mmol) was added. Then the solution was left in a freezer (253 K) for 24 h. A dark coloured precipitate formed, which was filtered off, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 35.2 mg (64.5%). Anal. ESI-MS Calcd for C₂₀H₂₂IN₄Os: m/z 637.0, found 637.0. H NMR((CD₃)₂CO) δ 9.74 (d, 1H, J = 6 Hz), 9.12 (m, 1H), 8.90 (d, 1H, J = 5 Hz), 8.41 (m, 1H), 8.22 (m, 2H), 7.86 (m, 2H), 6.78 (d, 1H, J = 6 Hz), 6.72 (d, 1H, J = 6 Hz), 6.57 (d, 1H, J = 6 Hz), 6.51 (d, 1H, J = 6 Hz), 2.72 (s, 3H), 2.39 (m, 1H), 0.93 (d of d, 6H). CHN analysis Found: C, 30.91%; H, 2.74%; N, 7.28%, Calcd for C₂₀H₂₂F₆IN₄OsP: C, 30.78%; H, 2.84%; N, 7.18%.

 $[Os(\eta^6-bip)(Abpy)Cl]PF_6$ (29). $[Os(\eta^6-bip)Cl_2]_2$ (51.0 mg, 0.064 mmol) and Abpy (32.0 mg, 0.17 mmol) were dissolved in methanol (30 mL) and heated under refluxed (T = 348 K) for 4 h. The solution colour changed from orange to pink immediately. The volume was reduced to ca. 10 mL by removal of methanol on a rotary evaporator and ammonium

hexafluorophosphate (40.0 mg, 0.24 mmol) was added. Then the solution was left in a freezer (253 K) for 24 h. A black crystalline product precipitated, which filtered off and washed with cold methanol and diethyl ether, then dried *in vacuo*. Yield: 56.4 mg (62.6%). Anal. ¹H NMR((CD₃)₂CO) δ 9.49 (d, 1H, J = 6 Hz), 9.05 (m, 1H), 8.80 (d, 1H, J = 8 Hz), 8.46 (t, 1H, , J = 8 Hz), 8.17 (m, 2H), 7.82 (m, 2H), 7.66 (d, 2H, J = 6 Hz), 7.48 (m, 3H). 7.14 (d, 1H, J = 6 Hz), 6.97 (d, 2H, J = 3 Hz), 6.82 (t, 1H, J = 6 Hz), 6.53 (m, 1H). CHN analysis Found: C, 36.91%; H, 2.42%; N, 8.25%, Calcd for C₂₀H₂₂ClF₆N₄OsP: C, 37.27%; H, 2.56%; N, 7.90%.

[Os(η⁶-*p*-cym)(Abpy)Cl]PF₆ (**30**). [Os(η⁶-*p*-cym)Cl₂]₂ (35.2 mg, 0.0445 mmol) was dissolved in methanol (25 mL) at RT. Abpy (20.4 mg, 0.11 mmol) in methanol (5 mL) was added drop-wise, the solution colour changed from orange to pink immediately. The solution was stirred at RT for 1 h. The volume was reduced to ca 10 mL by removal of methanol on a rotary evaporator. Ammonium hexafluorophosphate (73.0 mg, 0.45 mmol) was added. Then the solution was left in the freezer (253 K) for 24 h. The dark coloured precipitate was filtered off and washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 41.5 mg (67.7%). Anal. ESI-MS Calcd for C₂₀H₂₂ClN₄Os: m/z 545.1, found 545.0. ¹H NMR((CD₃)₂CO) δ 9.72 (d, 1H, J = 5 Hz), 9.07 (m, 1H), 8.94 (d, 1H, J = 4 Hz), 8.49 (t, 1H, J = 8 Hz), 8.25 (m, 2H), 7.88 (m, 2H), 6.93 (d, 1H, J = 6 Hz), 6.74 (d, 1H, J = 6 Hz), 6.40 (d, 1H, J = 6 Hz), 2.58 (m, 1H), 2.39 (s, 3H), 0.95 (d of d, 6H). CHN analysis Found: C, 34.69%; H, 3.08%; N, 8.20%, Calcd for C₂₀H₂₂ClPN₄OsF₆: C, 34.86%; H, 3.22%; N, 8.13%.

 $[Os(\eta^6-p-cym)(OH-Azpy-NO_2)I]PF_6$ (31). $[Os(\eta^6-p-cym)I_2]_2$ (23.8 mg, 0.020 mmol) was dissolved in methanol (30 mL) . OH-Azpy-NO₂ (10.5mg, 0.043 mmol) in methanol (5 mL) was added drop-wise. The solution was stirred at ambient temperature for 48 h with 7 drops of HCl (1 M). The volume was reduced to ca. 2 mL by removal of methanol on a rotary evaporator. The complex was purified by chromatography on a Sephadex LH20 column. Ammonium hexafluorophosphate (10.0 mg, 0.61 mmol) was added. Then the solution was left in the fridge for 0.5 h. The dark coloured precipitate was filtered off, washed with cold ethanol and diethyl ether, then finally dried *in vacuo*. Yield: 12.7 mg (37.8%). Anal. ESI-MS

Calcd for $C_{21}H_{22}IN_4O_3Os: m/z$ 697.0, found 696.9. ¹H NMR((CD_3)₂CO) δ 9.87 (d, 1H, J = 2 Hz), 9.68 (d, 1H, J = 9 Hz), 9.39 (d, 2H, J = 9 Hz), 9.73 (d, 2H, J = 9 Hz), 8.57 (m, 1H), 7.38 (d, 1H, J = 8 Hz), 7.04 (d, 1H, J = 8 Hz), 6.57 (s, 1H), 4.50 (m, 1H), 3.60 (s, 3H), 1.86 (d of d, 6H). CHN analysis Found: C, 31.06%; H, 2.83%; N, 6.44%, Calcd for $C_{21}H_{22}F_6IN_4O_3OsP: C, 30.01\%; H, 2.64\%; N, 6.67\%.$

[Os(η^6 -*p*-cym)(OH-Azpy-NO₂)CI]PF₆ (32). [Os(η^6 -*p*-cym) Cl₂]₂ (31.5 mg, 0.040 mmol) was dissolved in methanol (30 mL). OH-Azpy-NO₂ (19.7 mg, 0.081 mmol) in methanol (10 mL) was added drop-wise, the solution colour changed from yellow to brown immediately. The solution was stirred at ambient temperature for 4 h. The volume was reduced to about 2 mL by removal of methanol on a rotary evaporator. The complex was purified by chromatography on a Sephadex LH20 column. Ammonium hexafluorophosphate (26.2 mg, 0.16 mmol) was added. Then the solution was left in the freezer (253 K) for 1 h. The dark coloured precipitate was filtered off, washed with diethyl ether, and finally dried *in vacuo*. Yield: 25.1 mg (41.8%). Anal. ESI-MS Calcd for C₂₁H₂₂ClN₄O₃Os: 605.1, found 605.1. ¹H NMR((CD₃)₂CO) δ 9.06 (d, 1H, J = 2 Hz), 8.79 (d, 1H, J = 9 Hz), 8.56 (d, 2H, J = 9 Hz), 8.33 (d, 2H, J = 9 Hz), 7.80 (d, 1H, J = 8 Hz), 6.74 (d, 1H, J = 8 Hz), 6.36 (d, 2H, J = 8 Hz), 6.22 (d, 1H, J = 8 Hz), 2.57-2.52 (m, 1H), 2.47 (s, 3H), 1.00 (d of d, 6H). CHN analysis Found: C, 34.35%; H, 2.95%; N, 7.35%, Calcd for C₂₁H₂₂ClF₆N₄O₃OsP: C, 33.67%; H, 2.96%; N, 7.48%.

Table S1

(A) X-ray crystallographic data for compounds 7, 10, 13 and 14.

	7	10	13	14
Formula	$C_{23}H_{18}Cl_2F_6N_3OsP$	$C_{23}H_{18}ClF_7N_3OsP$	C23H18ClF6IN3OsP	$C_{21}H_{22}ClF_6IN_3OsP$
Molar mass	742.47	726.02	833.92	813.94
Crystal system	Monoclinic	Triclinic	Monoclinic	Triclinic
Crystal size /mm	0.35 x 0.25 x 0.08	0.40 x 0.16 x 0.16	0.25 x 0.10 x 0.10	0.50 x 0.40 x 0.08
Space group	P2(1)/c	P-1	P2(1)/n	P-1
Crystal	black block	brown block	black block	purple block
<i>a</i> / Å	7.6240(5)	7.4624(2)	6.9574(2)	7.6626(5)
b / Å	28.9718(19)	10.8856(4)	16.7829(6)	11.9693(8)
<i>c</i> / Å	11.0421(14)	14.5449(5	20.7297(7	13.6120(6)
α / deg	90	81.182(3)	90	99.966(5)
β / \deg	94.240(8)	84.223(2)	93.182(3)	102.906(5)
γ / \deg	90	82.970(3)	90	91.374(5)
T/K	298(2)	100(2)	100(2)	100(2)
Ζ	4	2	4	2
$R [F > 4\sigma (F)]^{[a]}$	0.0654	0.0249	0.023	0.0323
$R_w^{[b]}$	0.1996	0.0569	0.0484	0.0779
GOF ^[c]	1.044	0.998	1.008	1.018
$\Delta\rho$ max and min/ eÅ $^{-3}$	3.453 and -4.967	1.152 and -1.411	0.718 and -0.747	1.683 and -1.828
$\boxed{[a] R = \Sigma F_o - F_c /2}$	$\Sigma F_{o} $. [b] $R_{w} = [\Sigma w($	$(F_o^2 - F_c^2)^2 / \Sigma w F_o^2)^{1/2}$	$\overline{\text{GOF}} = [\Sigma w (F_o^2)]^2$	$(-F_c^2)^2/(n-p)]^{1/2}$.

[a] $K = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$. [b] $K_w = [\Sigma w (F_o^2 - F_c^2)^2/\Sigma w F_o^2]^{-1}$. [c] Where n = number of reflections and p = number of parameters

(B) X-ray crystallographic data for compounds 16, 18 and 19.

	16	18	19
Formula	$C_{21}H_{22}Cl_2F_6N_3OsP$	C21H22BrF6IN3OsP	C23H18BrClF6N3OsP
Molar mass	722.49	858.4	786.93
Crystal system	Triclinic	Triclinic	Triclinic
Crystal size /mm	0.22 x 0.18 x 0.16	0.20 x 0.14 x 0.12	0.40 x 0.18 x 0.05
Space group	P-1	P-1	P-1
Crystal	green block	black block	brown block
<i>a</i> / Å	9.1784(2)	7.8035(3)	8.8866(5)
<i>b</i> / Å	10.6711(3)	11.9630(5)	10.0428(4)
<i>c</i> / Å	12.2921(4)	13.6394(6)	14.1695(7
α / deg	93.579(2)	100.216(4)	103.452(4)
β / deg	93.460(2)	102.863(4)	94.374(4)
γ/deg	96.430(2)	90.779(3)	100.802(4)
T / K	100(2)	100(2)	100(2)
Ζ	2	2	2
$R [F > 4\sigma (F)]^{[a]}$	0.0214	0.0264	0.0257
$R_w^{[b]}$	0.0424	0.0608	0.0567
GOF ^[c]	0.977	1.034	0.99
$\Delta \rho$ max and min/ eÅ ⁻³	0.800 and -0.759	2.450 and -0.866	1.113 and -1.144

[a] $R = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$. [b] $R_w = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^2)]^{1/2}$. [c] $GOF = [\Sigma w (F_o^2 - F_c^2)^2 / (n-p)]^{1/2}$. Where n = number of reflections and p = number of parameters

	20	24	26
Formula	C21H22BrClF6N3OsP	C22H27ClF6IN3O1.50Os	$C_{21}H_{22}Cl_2F_6N_3OsP$
Molar mass	766.95	854.99	722.49
Crystal system	Monoclinic	Orthorhombic	Triclinic
Crystal size /mm	0.30 x 0.10 x 0.05	0.32 x 0.32 x 0.18	0.20 x 0.12 x 0.05
Space group	P2(1)/n	Pbca	P-1
Crystal	black block	black block	black block
<i>a</i> / Å	16.6936(5)	19.4975(4)	7.2224(2)
b / Å	9.0505(3)	14.2729(3)	10.6661(4)
<i>c</i> / Å	16.9583(5)	20.3022(3)	15.8327(6)
α / deg	90	90	79.383(3)
β / deg	107.970(3)	90	78.400(3)
γ / deg	90	90	85.931(3)
T / K	100(2)	173(2)	100(2)
Ζ	2	2	2
$R [F > 4\sigma (F)]^{[a]}$	0.0292	0.0324	0.0221
$R_w^{[b]}$	0.0524	0.073	0.045
$GOF^{[c]}$	0.926	0.921	0.984
$\Delta\rho$ max and min/ $e{\rm \AA}^{\text{-3}}$	2.010 and -1.610	1.734 and -1.466	1.287 and -0.795
$[a] \mathbf{R} = \Sigma \mathbf{F}_1 - \mathbf{F}_2 /$	$\Sigma \mathbf{F}_{\perp} = [\Sigma \mathbf{w}(\mathbf{F}_{\perp})]$	$(2^{2} - F_{2}^{2})^{2} / \Sigma w F_{2}^{2})^{1/2} [c] ($	$GOF = \frac{[\Sigma w(F_{1}^{2} - F_{2}^{2})^{2}}{(n-1)^{2}}$

(C) X-ray crystallographic data for compounds 20, 24 and 25

 $[a] R = \Sigma ||F_o| - |F_c||/\Sigma |F_o|. [b] R_w = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^2)]^{1/2}. [c] GOF = [\Sigma w (F_o^2 - F_c^2)^2 / (n-p)]^{1/2}.$ Where n = number of reflections and p = number of parameters **Table S2.** Selected bond lengths (Å) and angles (°). (A) Iodido complexes $[Os(\eta^6-bip)(2-Cl-Azpy)I]PF_6$ (**13**), $[Os(\eta^6-p-cym)(2-Cl-Azpy)I]PF_6$ (**14**), $[Os(\eta^6-p-cym)(2-Br-Azpy)I]PF_6$ (**18**) and $[Os(\eta^6-p-cym)(3-Cl-Azpy)I]PF_6$ (**24**). (B) Chlorido complexes $[Os(\eta^6-bip)(1-Cl-Azpy)Cl]PF_6$ (**7**), $[Os(\eta^6-bip)(2-F-Azpy)Cl]PF_6$ (**10**), $[Os(\eta^6-p-cym)(2-Cl-azpy)Cl]PF_6$ (**16**), $[Os(\eta^6-bip)(2-Br-Azpy)Cl]PF_6$ (**19**), $[Os(\eta^6-p-cym)(2-Br-Azpy)Cl]PF_6$ (**20**) and $[Os(\eta^6-p-cym)(3-Cl-Azpy)Cl]PF_6$ (**26**).

(A) Iodido complexes

bond length/angle	13	14	18	24
Os(1)-N(8)	2.006(3)	2.033(4)	2.033(3)	2.009(3)
Os(1)-N(1)	2.057(3)	2.065(4)	2.051(3)	2.053(3)
Os(1)-C(15)	2.219(3)	2.213(5)	2.210(4)	2.228(4)
Os(1)-C(19)	2.261(3)	2.230(5)	2.220(4)	2.245(4)
Os(1)-C(18)	2.172(3)	2.240(5)	2.245(4)	2.190(4)
Os(1)-C(16)	2.221(3)	2.239(5)	2.243(4)	2.226(4)
Os(1)-C(20)	2.313(3)	2.219(5)	2.216(4)	2.284(4)
Os(1)-C(17)	2.203(3)	2.260(5)	2.268(4)	2.247(4)
Os(1)-I(1)	2.7063(2)	2.7002(4)	2.7056(3)	2.7007(3)
N(7)-N(8)	1.293(4)	1.296(5)	1.290(5)	1.284(4)
N(8)-Os(1)-N(1)	74.94(10)	75.47(16)	75.15(13)	74.41(13)
N1-Os-I	84.72(7)	84.98(11)	84.91(9)	82.36(9)
I-Os-N8	87.31(7)	88.76(11)	89.49(9)	87.76(9)

(B) Chlorido complexes

bond length/angle	7	10	16	19	20	26
Os(1)-N(8)	2.007(7)	2.023(3)	2.012(2)	2.039(3)	2.024(2)	2.0067(17)
Os(1)-N(1)	2.124(9)	2.053(3)	2.059(2)	2.055(3)	2.047(2)	2.0638(18)
Os(1)-C(15)	2.173(10)	2.233(3)	2.227(3)	2.242(4)	2.238(3)	2.246(2)
Os(1)-C(19)	2.227(9)	2.233(3)	2.218(3)	2.181(4)	2.208(3)	2.217(2)
Os(1)-C(18)	2.225(12)	2.239(3)	2.227(3)	2.204(4)	2.228(3)	2.221(2)
Os(1)-C(16)	2.255(10)	2.212(3)	2.173(3)	2.215(4)	2.187(3)	2.177(2)
Os(1)-C(20)	2.230(10)	2.233(3)	2.263(3)	2.278(4)	2.259(3)	2.286(2)
Os(1)-C(17)	2.257(11)	2.242(4)	2.226(3)	2.215(4)	2.238(3)	2.231(2)
Os(1)-Cl(1)	2.387(3)	2.3727(8)	2.3954(6)	2.3896(9)	2.3880(7)	2.3915(5)
N(7)-N(8)	1.276(11)	1.287(4)	1.295(3)	1.283(5)	1.295(3)	1.292(2)
N(8)-Os(1)-N(1)	73.8(3)	74.52(11)	74.96(9)	74.32(13)	74.88(10)	74.68(7)
N1-Os-Cl	83.5(3)	82.24(8)	84.88(6)	84.69(9)	85.11(7)	84.45(5)
Cl-Os-N8	89.6(2)	88.36(8)	87.82(6)	88.86(9)	86.44(7)	89.63(5)

Table. S3. Comparison of octanol/water partition coefficients (log P values) and cytotoxicity towards A2780 cells. Data are the mean of three experiments and are reported as mean \pm standard error of the mean (SEM)

Complex	Log P	$IC_{50}/\mu M$
9	$-0.99 (\pm 0.28)$	0.63 (±0.1)
13	$-0.09 (\pm 0.06)$	1.0 (±0.1)
17	$0.08~(\pm 0.07)$	0.59 (±0.02)
19	0.13 (± 0.06)	>50
23	$-0.59 (\pm 0.32)$	22.0 (±2.0)
25	$-1.45 (\pm 0.37)$	>100

	9	23
Time / h	ppt Os/10 ⁴ cells	ppt Os/10 ⁴ cells
0.5	40.6 (±1.6)	64.8 (±5.6)
1	51.8 (±2.8)	67.4 (±0.3)
4	263.8 (±12.7)	67.9 (±1.8)
24	399.4 (±20.9)	35.1 (±2.2)

Table S4. Time dependent accumulation of Os from complexes **9** and **23** in A2780 human ovarian cancer cells.

Figure S1. Electronic absorption spectra for compounds **9** (A) and **23** (B) before and after incubation for 24 h at 310 K in a solution of methanol and water (5:95 v/v).

Fig. S2 Distribution of osmium in A2780 cells as a percentage of total osmium for compounds 9 and 23. All data are the mean of three experiments and are reported as mean \pm standard error of the mean (SEM)