ELECTRONIC SUPPLEMENTARY INFORMATION

Probing Lewis acidity of Y(BH₄)₃ via its reactions with MBH₄ (M = Li, Na, K, NMe₄)

Tomasz Jaroń^{1,*} and Wojciech Grochala^{1,2**}

¹ Faculty of Chemistry, The University of Warsaw, Pasteura 1, 02093 Warsaw, Poland.

5² ICM, The University of Warsaw, Pawińskiego 5a, 02106 Warsaw, Poland.

* e-mail: tjaron@chem.uw.edu.pl, ** e-mail: wg22@cornell.edu

Contents:

25

- 1. Figure S1. Rietveld plot of KY(BH₄)₄ refinement.
- 2. Figure S2. Rietveld plot of $(CH_3)_4NY(BH_4)_4$ refinement.
- 10 3. Table S3. Interatomic distances in KY(BH₄)₄ crystal.
 - 4. Table S4. Interatomic distances in (CH₃)₄NY(BH₄)₄ crystal.
 - 5. Table S5. Comparison of the ranges of bond lengths and angles in selected borohydrides.
 - 6. Introduction to the FTIR spectra of $Y(BH_4)_3/MBH_4$ composites.
 - 7. Figure S6. Infrared spectra of $Y(BH_4)_3 + MBH_4$ composites.
- 15 8. Table S7. Infrared absorption bands in the synthesised Y compounds compared with their Sc analogues.
 - 9. Figure S8. Temperature-resolved FTIR spectrum of the gases evolved during the thermal decomposition process of $(CH_3)_4NY(BH_4)_4$.
 - 10. Figure S9. MS of the gases evolved in the thermal decomposition of $(CH_3)_4NY(BH_4)_4$.
- 20 11. Figure S10. Temperature-resolved FTIR spectrum of the gases evolved during the thermal decomposition process of $(CH_3)_4NBH_4$.
 - 12. Figure S11. MS of the gases evolved in the thermal decomposition of $(CH_3)_4NBH_4$.
 - 13. Figure S12. PXD of the thermal decomposition products of $(CH_3)_4NY(BH_4)_4$.
 - 14. Figure S13. Temperature-resolved FTIR spectrum of the gases evolved during the thermal decomposition of KY(BH₄)₄.
 - 15. Figure S14. Temperature-resolved MS of the gases evolved in the thermal decomposition of $K Y(BH_4)_4$.
 - 16. Figure S15. TGA and DSC profiles of KBH₄ milled for 1 h.
 - 17. Figure S16. TGA and DSC profiles of 3KBH₄ + YCl₃ milled for 1 h.

- 18. Figure S17. FTIR spectra of $KY(BH_4)_4$ thermal decomposition products at RT, (b) heated to 210 ^oC and cooled to RT, (c) heated to 295 ^oC and cooled to RT, (d) heated to 410 ^oC and cooled to RT, (e) KBH₄, (f) YH_x.
- 19. Figure S18. TGA and DSC profiles of KBH_4 milled for 1 h.
- 20. Figure S19. Rietveld plot of $Y(BH_4)_3$ + NaBH₄ + 3 LiCl composite measured at 171 ^oC.
 - 21. Figure S20. Rietveld plot of Y(BH₄)₃ + NaBH₄ + 3 LiCl composite heated to 200 ^oC (5 K/min) and rapidly quenched (50 K/min); PXD measured at RT.
 - 22. Figure S21. PXD pattern of $Y(BH_4)_3 + NaBH_4 + 3$ LiCl composite at 400 °C.
 - 23. Figure S22. PXD pattern of $Y(BH_4)_3 + LiBH_4 + 3$ LiCl composite heated to 210 ^oC and quickly quenched to room temperature.
 - 24. Figure S23. PXD pattern of $KY(BH_4)_3 + 3$ LiCl: (a) sample heated to 210 $^{\circ}C$ and quickly quenched to room temperature (black, top curve), measured for 17 h at room temperature; (b) measured at 200 $^{\circ}C$ for 5.5 h.

Figure S1. Rietveld plot from structure refinement of KY(BH₄)₄.

15

10

5

Figure S2. Rietveld plot from structure refinement of $(CH_3)_4NY(BH_4)_4$.

Table S3. Interatomic distances in KY(BH₄)₄ crystal.

КҮ(ВН₄)₄	PXD
(B – H) _{min}	1.12(4)
(B – H) _{max}	1.12(4)
(H – B – H) _{min}	109(4)
(H – B – H) _{max}	109(4)
(Y – H) _{min}	2.20(3)
(Y - H) _{max}	2.41(4)
(Y – H) _{averag.} x 12	2.29
(Y – B) _{min}	2.362(9)
(Y – B) _{max}	2.448(10)

(Y – B) _{averag.} x 4	2.405
(B - Y - B) _{min}	108.44(16)
(B - Y - B) _{max}	112.3(4)
(K – H) _{min}	2.60(4)
(K – H) _{averag.} x 6	2.76
(K – H) _{max}	3.37(3)
(K – H) _{averag.} x 12	3.34
(K – H) _{overall} x 18	3.147
(K – B) _{min}	3.259(10)
(K – B) _{max}	3.354(7)
(K – B) _{averag.} x 6	3.32
(B - K - B) _{min}	87.21(17)
(B - K - B) _{max}	92.79(17)

Table S4. Interatomic distances in $(CH_3)_4NY(BH_4)_4$ crystal; results from periodic DFT calculations and PXD Rietveld refinement.

(CH ₃) ₄ NY(BH ₄) ₄	DFT	PXD
(B – H) _{min}	1.206	1.15(6)
(B – H) _{max}	1.251	1.15(6)
$(H - B - H)_{min}$	105.68	109(5)
$(H - B - H)_{max}$	112.54	109(5)
(Y - H) _{min}	2.281	2.29(3)
(Y - H) _{max}	2.313	2.318(9)
(Y – H) _{averag.} x 12	2.296	2.296
(Y - B) _{min}	2.447	2.394(11)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2011

(Y - B) _{max}	2.471	2.430(9)
(Y – B) _{averag.} x 4	2.454	2.407
(B - Y - B) _{min}	107.46	107.5(6)
(B - Y - B) _{max}	111.19	115.5(4)
(N – B) _{min}	4.268	4.400(19)
(N – B) _{max}	5.028	5.043(12)
(N – B) _{averag.} x 9	4.743	4.770
(N - Y) _{min}	5.616	5.804(7)
(N - Y) _{max}	6.150	6.037(8)
(N – Y) _{averag.} x 6	5.920	5.904

Table S5. Comparison of the ranges of bond lengths and angles in selected borohydrides. Units: V_m (molar volume) [Å³], distances [Å], angles [^o].

	Quasi	i-binary borohy	drides	Quasi-ternary Sc borohydrides			Quasi-ternary Y borohydrides	
Value or range	KBH4 Fm– 3m ^{Error!} Bookmark not defined.	(CH ₃) ₄ NBH ₄ P4/nmm ^{Error!} Bookmark not defined.	LT– Y(BH ₄) ₃ Pa–3 ^{Error!} Bookmark not defined.	LiSc(BH ₄) ₄ P–42c ^{Error!} Bookmark not defined.	NaSc(BH ₄) ₄ Cmcm ^{Error!} Bookmark not defined.	KSc(BH ₄) ₄ Pnma ^{Error!} Bookmark not defined.	KY(BH ₄) ₄ Cmcm	(CH ₃) ₄ NY(BH ₄) ₄ Pnma
V _m	76.1	177.1	159.8	222.2	218.7	234.1	256.4	386.6
Wt. % H*	7.5	4.5	9.1	14.5	12.7	11.2	8.6	7.2
M ^I -H**	2.877(11)	3.90(5)– 5.91(4)		1.98(8)– 2.5(1)	2.33(1)– 3.34(1)	2.58(7)– 3.69(12)	2.60(4)– 3.37(3)	3.899(8)-5.957(12)
M ^I -B**	3.3640(6)	4.533(6)- 5.246(8)		2.54(1)	2.94(1)- 3.22(1)	3.51(4)– 3.95(2)	3.259(10)– 3.354(7)	4.400(19)- 5.043(12)
B-M ^I -B**	90	70.25(17)– 121.57(19)		73.0(3)– 101.257(15)	87.76(2)– 92.24(2)	57.3(4)– 111.8(4)	87.21(17)– 92.79(17)	49.09(16)-122.4(3)
M ^{III} –H			2.229(8)– 2.334(7)	1.92(5)– 2.55(8)	2.15(2)– 2.17(2)	2.0(1)- 2.4(1)	2.20(3)– 2.41(4)	2.29(3)-2.318(9)
M ^{III} –B			1.176(10)– 1.235(9)	2.28(1)	2.27(1)- 2.50(1)	2.27(2)– 2.38(3)	2.362(9)- 2.448(10)	2.394(11)- 2.430(9)
B-M ^{III} -B			78.6(2)– 105.0(2)	95.5(14)– 114.9(5)	96.5(5)– 125.4(5)	108.9(5)– 110.6(6)	108.44(16)– 112.3(4)	107.5(6)-115.5(4)

5 (*) wt. % of H in pure compound; (**) $M^{\rm I}$ corresponds to N atom for (CH_3)_4N salts.

Infrared spectra of Y(BH₄)₃/MBH₄ composites.

The vibrational spectra of KY(BH₄)₄ an (CH₃)₄NY(BH₄)₄ confirm structural aspects described earlier. The B–H stretching ($v_{BH} = 2100-2600 \text{ cm}^{-1}$) and H–B–H deformation ($\delta_{HBH} = 1050-1400 \text{ cm}^{-1}$) absorption bands are very similar to those for analogous scandium compounds, MSc(BH₄)₄, and characteristic for tridentate BH₄⁻ group.¹ The v_{BH} bands are split into two groups, around 2475 cm⁻¹ and 2150–2300 cm⁻¹, which has been assigned to stretching of the terminal hydrogen–B and bridging hydrogen–B bonds, respectively. The most important IR bands of these two compounds are summarised and compared with those for Sc borohydrides in *Tab S3*.

Figure S6. Infrared spectra of $Y(BH_4)_3 + MBH_4$ composites. $MBH_4 = (a) LiBH_4$, (b) $NaBH_4$, (c) KBH_4 , (d) $(CH_3)_4 NBH_4$.

Table S7. The most important infrared absorption bands in the as-synthesised Y compounds compared with Sc analogues. vs - very strong, s - strong, w - weak, vw - very weak, sh - shoulder.

LiSc(BH ₄) ₄	NaSc(BH ₄) ₄	KY(BH ₄) ₄	KSc(BH ₄) ₄	(CH ₃) ₄ NY(BH ₄) ₄	Accignment
P-42c	Cmcm	Cmcm	Pnma	Pnma	Assignment
				3032 w	C II al a la bia
-	-	-	-	2964 vw	C-H stretching
2468	2486	2482 vs	2506 sh	2490 vc	B-H _{terminal}
	2461	2468 sh	2485	2480 VS	stretching

2259		2290		2291	
2240	2240	2236 vs	2288	2227 vs	D II stratabing
2199	2160	2183 sh	2223	2170	B-n _{bridge} stretching
2121 w		2156 sh		2148 sh	
				1484 s	Н-С-Н
	-	-	-	1418 vw	deformations
1325	1240	1224	1227.04	1288 vw	H-B-H _{terminal}
	1540	1524	122/ M		deformations
1104.00	1180 vs	1203 \vs	1188 vs	1196 vs	H-B-H _{bridge}
1194 V3	1109 V3	1203 V3	1100 V3		deformations
1112		111 <i>1</i> c	1121		
1115	1105	1114 5	1109 sh	1109 s	
1071 W		1050 sh	1091 sh		deformations
				949 s	
-	-	-	-	912 vw	NC4 breathing

Figure S8. Temperature-resolved FTIR spectrum of the gases evolved during the thermal decomposition of $(CH_3)_4NY(BH_4)_4$ (5 K/min).

Figure S9. MS of the gases evolved in the thermal decomposition of $(CH_3)_4NY(BH_4)_4$ (5 K/min). Only the most important M/Z are shown.

Figure S10. Temperature-resolved FTIR spectrum of the gases evolved during the thermal decomposition of $(CH_3)_4NBH_4$ (5 K/min).

Figure S11. MS of the gases evolved in the thermal decomposition of $(CH_3)_4NBH_4$ (5 K/min). Only the most important M/Z are shown.

Figure S12. PXD of the thermal decomposition products of $(CH_3)_4NY(BH_4)_4$. The unmarked reflexes come from $(CH_3)_4NY(BH_4)_4$.

```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{O} The Royal Society of Chemistry 2011
```


Figure S13. (a) Temperature-resolved FTIR spectrum of the gases evolved during the thermal decomposition of $KY(BH_4)_{4r}$ (b) the single spectrum at a maximum B_xH_y emission (T = ca. 160 $^{\circ}C$).CO₂ present in the atmosphere of the spectrometer (but not inside the gas cell) has not been completely compensated.

Figure S14. MS of the gases evolved in the thermal decomposition of K $Y(BH_4)_4$ (5 K/min). Only the most important M/Z are shown.

Figure S15. TGA (red, full line) and DSC (blue, dashed line) curves of KBH₄ milled for 1 h (5 K/min).

Figure S16. TGA (red, full line) and DSC (blue, dashed line) curves of 3KBH₄ + YCl₃ milled for 1 h (5 K/min).

Figure S17. FTIR spectra of $KY(BH_4)_4$ thermal decomposition products: (a) as synthesised, (b) heated to 210 $^{\circ}C$ and cooled to RT, (c) heated to 295 $^{\circ}C$ and cooled to RT, (d) heated to 410 $^{\circ}C$ and cooled to RT, (e) KBH₄, (f) YH_x.²

Figure S18. TGA (red, full line) and DSC (blue, dashed line) curves of NaBH₄ milled for 1 h (5 K/min).

Figure S19. Rietveld plot of $Y(BH_4)_3 + NaBH_4 + 3$ LiCl composite measured at 171 °C. BH_4^- sites in $NaY(BH_4)_2Cl_2$ are partially occupied by $C\Gamma$, leading to composition: $NaYCl_{2.18}(BH_4)_{1.82}$.

Figure S20. Rietveld plot of $Y(BH_4)_3 + NaBH_4 + 3$ LiCl composite heated to 200 ^oC (5 K/min) and rapidly quenched (50 K/min); PXD measured at RT. BH_4^- sites in $NaY(BH_4)_2Cl_2$ are partially occupied by $C\Gamma$, leading to composition: $NaYCl_{2.09}(BH_4)_{1.91}$. Please, note the minor Cl substitution degree, which is probably due to shorter exposition to high temperature than in case of the sample measured at 171 ^oC.

Figure S21. PXD pattern of $Y(BH_4)_3$ + NaBH₄ + 3 LiCl composite measured at 400 ^oC. The reflexes originating from the heating cell have been marked.

Figure S22. PXD pattern of $Y(BH_4)_3 + LiBH_4 + 3$ LiCl composite heated to 210 ^oC and quickly quenched to room temperature. Measured at ambient conditions.

Figure S23. PXD pattern of $KY(BH_4)_3 + 3$ LiCl: (a) sample heated to 210 $^{\circ}C$ and quickly quenched to room temperature (black, top curve), measured for 17 h at room temperature; (b) measured at 200 $^{\circ}C$ for 5.5 h. In (b) only the reflexes from the temperature cell (not marked) and those of LiCl are observed, while in (a)the reflexes from intermediate(s) appear. The intermediate phase has been detected in the samples heated to 190 – 210 $^{\circ}C$ and quenched rapidly to room temperature.

¹ T. J. Marks, and J. R. Kolb, *Vhem. Rev.*, **77** (1977) 263.

² FTIR spectrum of YH_x was kindly provided by R. V. Genova, M.Sc., and K. J. Fijałkowski, M.Sc..