Supporting Information

Influencing Electronic Interaction in Diferrocenyl-1-Phenyl-1*H*-Pyrroles

Alexander Hildebrandt and Heinrich Lang*

Table of Contents

Figure SI1 ¹ H NMR and simulated spectrum of 3e	2
Figure SI2 ¹ H- ¹ H-COSY NMR spectrum of 3e	2
Figure SI3 ¹ H- ¹³ C-HSQC NMR spectrum of 3e	3
Figure SI4 NIR spectra of 3a.	3
Figure SI5 NIR spectra of 3b.	4
Figure SI6 NIR spectra of 3e.	4
Figure SI7 NIR spectra of 3f.	5

Figure SI1 Top: ¹H NMR spectrum of **3e** in the range between 6.9 and 7.5 ppm in $CDCl_3$ (7.26 ppm) at 25 °C; bottom: simulated spectrum of **3e** for a frequency of 500.13 MHz and a line width of 0.5 Hz.

Figure SI2 Top: ¹H-¹H-COSY NMR spectrum of **3e** in the range between 6.9 and 7.5 ppm in $CDCl_3$ (7.26 ppm) at 25 °C.

Figure SI3 Top: ${}^{1}\text{H}{}^{-13}\text{C}{}^{-}\text{HSQC}$ NMR spectrum of **3e** (range: ${}^{1}\text{H}$ 6.9 to 7.5 ppm; ${}^{13}\text{C}$ 110 to 145 ppm) in CDCl₃ at 25 °C.

Figure SI4 NIR spectrum of **3a**. Arrows indicate increasing, decreasing or shifting of the absorptions; dichloromethane solutions (1.0 mmol·L⁻¹) at 25 °C, supporting electrolyte $[N^{n}Bu_{4}][B(C_{6}F_{5})_{4}]$ (0.1 mol·L⁻¹); bottom: oxidation of **3a** to **3a**⁺ at potentials from -400 to 350 mV; middle: oxidation of **3a**⁺ to **3a**²⁺ (375 - 600 mV); top: oxidation of **3a**²⁺ to **3a**³⁺ (600 - 1500 mV).

Figure SI5 NIR spectrum of **3b**. Arrows indicate increasing, decreasing or shifting of the absorptions; dichloromethane solutions (1.0 mmol·L⁻¹) at 25 °C, supporting electrolyte $[N^{n}Bu_{4}][B(C_{6}F_{5})_{4}]$ (0.1 mol·L⁻¹); bottom: oxidation of **3b** to **3b**⁺ at potentials from -200 to 325 mV; top: oxidation of **3b**⁺ to **3b**²⁺ (350 - 1000 mV).

Figure SI6 NIR spectrum of **3e**. Arrows indicate increasing, decreasing or shifting of the absorptions; dichloromethane solutions $(1.0 \text{ mmol}\cdot\text{L}^{-1})$ at 25 °C, supporting electrolyte $[N^n\text{Bu}_4][B(C_6F_5)_4]$ (0.1 mol·L⁻¹); bottom: oxidation of **3e** to **3e**⁺ at potentials from -200 to 350 mV; top: oxidation of **3e**⁺ to **3e**⁺ to **3e**²⁺ (350 - 1000 mV).

Figure SI7 NIR spectrum of **3f**. Arrows indicate increasing, decreasing or shifting of the absorptions; dichloromethane solutions (1.0 mmol·L⁻¹) at 25 °C, supporting electrolyte $[N^{n}Bu_{4}][B(C_{6}F_{5})_{4}]$ (0.1 mol·L⁻¹); bottom: oxidation of **3f** to **3f**⁺ at potentials from -200 to 350mV; top: oxidation of **3f**⁺ to **3f**²⁺ (350 - 1000 mV).