Electronic Supplementary Information

Novel heterometal-organic complexes as first single source precursors for up-

converting NaY(Ln)F₄ (Ln = Yb, Er, Tm) nanomaterials

Shashank Mishra,*^{*a,b*} Gilles Ledoux,^{*b*} Erwann Jeanneau,^{*c*} Stéphane Daniele*^{*a*}

and Marie-France Joubert*^b

^a University of Lyon 1, IRCELYON, 2 Avenue A. Einstein, 69626 Villeurbanne, France.

Fax: 33 472445399; Tel: 33 472445329; E-mail: mishrashashank74@rediffmail.com

^b University of Lyon 1, Laboratoire de Physico Chimie des Matériaux Luminescent, 10 rue A.

M. Ampére, 69622 Villeurbanne, France.

^c University of Lyon 1, Centre de Diffractométrie, 69622 Villeurbanne, France.

Fig. S1 FT-IR spectra of (a) diglyme complexes **1** & **4**-**6**, and (b) triglyme (**2**) and tetraglyme complexes (**3**, **7**, **8**).

Fig. S2 1 H NMR spectra of 1 (a), 2 (b) and 3 (c).

3

Fig. S3 TGA (a) and DTA (b) of NaYF₄: Yb^{3+} , Er^{3+}/Tm^{3+} NCs obtained at different temperature.

Fig. S4 EDX analysis of the thin films obtained by spin-coating of the diglyme precursors **1**, **4** and **6**. Above: NaYF₄: Yb³⁺, Er³⁺ films on Si wafer & calcined at 400 °C under nitrogen. Below: thin films consisting of the NaF and Y(Ln)OF phases on glass substrate (calcined at 400 °C in air).

Fig. S5 Emission spectra of NaYF₄: Yb³⁺, Er³⁺ NCs when taken in solid or solution states.

Fig. S6 Effect of aging of NaYF₄: 20% Yb^{3+} , 2% Tm^{3+} NCs.

Fig. S7: Evolution of the intensity of the difference bands with the excitation power: (a) hexagonal phase of NaYF₄: Yb³⁺, Ln³⁺ NCs taken as a solid powder, and b) the cubic phase of NaYF₄: Yb³⁺, Tm³⁺ NCs taken in water.