Supporting Information for The influence of reversible trianionic pincer $OCO^{3-} \mu$ -oxo Cr^{IV} dimer formation ([Cr^{IV}]₂(μ -O)) and donor ligands in oxygen-atomtransfer (OAT)[†]

Matthew, E. O'Reilly, Trevor J. Del Castillo, Khalil A. Abboud, and Adam S. Veige*

Department of Chemistry, Center for Catalysis, University of Florida, Gainesville, FL, 32611.

Index	Page
[^t BuOCO]Cr(O)(THF) (2) reduction:	
Variable Temperature	S2
Solvent Effect: MeCN, CH ₂ Cl ₂ , and THF	S2
${[^{t}BuOCO]Cr^{IV}(THF)}_{2}(\mu-O)(3)$ reduction:	
Proposed mechanism	S3
Rate law derivation	S3-S4
ln[3] vs time	S4
$2[3] - [Cr]_{tot} \ln[3]$ vs time	S5
IR of $[^{t}BuOCO]Cr^{V}(O)(CH_{2}PPh_{3})$ (4)	S6
¹ H NMR of [^{<i>t</i>} BuOCO]Cr ^V (O)(CH ₂ PPh ₃) (4)	S6
UV-vis of [^t BuOCO]Cr ^V (O)(CH ₂ PPh ₃) (4)	S7
¹ H NMR of 3 with OPPh ₃	S8
EPR of 2 and 2a with MeCN	S8

Temp. (K)	1/T (K ⁻¹)	k	k	k	Avg. k	ln(k/T)
273.15	0.003661	14.2	15.5	13.0	14.2	-2.95
283.15	0.003532	31.7	36.4	37.0	35.1	-2.08
293.15	0.003411	59.2	55.4	49.6	54.7	-1.68
313.15	0.003193	159	157	167	161	-0.665

Table S1. Reduction of **2**. Variable Temperature vs. k_{obs} (M/s)

Figure S1. Eyring plot for the OAT from **2a** (0.186 mM) to PPh₃ (1.59 mM) in THF between 0 – 40 °C. Intercept (b) = -2(2); slope (m) = -4.6(5) x10³. Calculated $\Delta S^{\ddagger} = -18(3)$ cal/mol; $\Delta H^{\ddagger} = 9.4(8)$ kcal/mol.

Figure S2. [2] vs time in MeCN, THF, and DCM/THF.

Scheme S1. Mechanism of OAT from 3.

$$\frac{d[5]}{dt} = k_2 [PPh_3][2]_{ss} (S1)$$

$$\Delta[\mathbf{2}]_{ss} = 0 = k_1[\mathbf{3}] - k_{-1}[\mathbf{5}][\mathbf{2}] - k_2[\mathbf{2}][PPh_3]$$
(S2)

$$[\mathbf{2}]_{SS} = \frac{k_1[3]}{k_{-1}[5] + k_2[PPh_3]}$$
(S3)

$$\frac{d[5]}{dt} = \frac{k_1 k_2 [PPh_3][3]}{k_{-1}[5] + k_2 [PPh_3]}$$
(S4)

At late reaction times assume: k₋₁[**5**]>>k₂[PPh₃]

$$\frac{d[5]}{dt} = \frac{k_1 k_2[3][PPh_3]}{k_{-1}[5]} \quad (S5)$$

Mass-balance equation

$$[Cr]_{tot} = 2[3] + [5] + [2] \quad (S6)$$

Since $[2] = [2]_{ss} \approx 0$
$$[Cr]_{tot} = 2[3] + [5] \quad (S7)$$

$$\frac{d[5]}{dt} = -\frac{d[3]}{dt} = \frac{k_1 k_2 [3] [PPh_3]}{k_{-1} ([Cr]_{tot} - 2[3])} \quad (S8)$$

$$\frac{-[Cr]_{tot}+2[3]}{[3]}d[\mathbf{3}] = \frac{k_1 k_2 [PPh_3]}{k_{-1}}dt$$
(S9)

Integrated rate law

$$-[Cr]_{tot}\ln[3] + 2[3] = \frac{k_1 k_2 [PPh_3]}{k_{-1}} t \quad (S10)$$

At early reaction times assume: $k_2[PPh_3] \gg k_{-1}[5]$

$$\frac{d[5]}{dt} = -\frac{d[3]}{dt} = k_1[3] \quad (S11)$$

Figure S2. Averaged plots of $\ln[3]$ vs time between reaction times 0-150 s for $[3] = 0.78 \times 10^{-4}$ and 1.56×10^{-4} M and for 0-300 s for $[3] = 3.31 \times 10^{-4}$ M upon addition of PPh₃ (1.1 x 10⁻³ M).

Table S2. k_1 (s⁻¹) values obtained from the slope of the ln[**3**] vs time (0 - 150 s) plots for [**3**] (0.31, 0.16, and 0.08 mM); PPh₃ (1.10 mM) in CH₂Cl₂ (22°C).

[3] x10 ⁴	k_1x10^4	k_1x10^4	$k_1 \ x 10^4$
0.78	26.1	21.9	22.7
1.56	14.0	14.4	13.4
3.31	9.14	7.81	8.19

Figure S3. The average $2[3] - [Cr]_{tot}ln[3]$ vs time upon the addition of PPh₃ (1.1 x10⁻³ M) into a solution of **3** (0.78, 1.56, and 3.31 (x10⁻⁴) M) in CH₂Cl₂.

Table S3. Slopes obtained from the plot of the $[Cr]_{tot}ln[3] - 2[3]$ vs time for [3] (0.78, and 1.56, 3.11 (x10⁻⁴) M); PPh₃ (1.10 x10⁻³ M) in CH₂Cl₂ (22 °C).

$[3] \times 10^4$	m x10 ⁸	m x10 ⁸	m x10 ⁸
0.78	3.10	3.51	3.59
1.56	3.14	2.42	2.29
3.31	9.14	7.81	8.19

Supporting Information for [^tBuOCO]Cr^VO(CH₂PPh₃) (4).

							6/9/2010 10:51:48 AM
Acquisition Time (sec)	1.2800	Comment	mment 1H Standard Parameters			Date	Jun 8 2010
Date Stamp	Jun 8 2010	File Name	C:\Users\Matth	ew\Documents\(OCO)Cr(C)(CH2PPh3)\100	608A.fid\fid	
Frequency (MHz)	300.15	Nucleus	1H	Number of Transients	16	Original Points Count	64000
Points Count	65536	Pulse Sequence	s2pul	Receiver Gain	22.00	Solvent	Benzene
Spectrum Offset (Hz)	2061.7407	Spectrum Type	STANDARD	Sweep Width (Hz)	50000.00	Temperature (degree C	25.000
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Vertic	alScaleFactor = 1		7 6 5	Ph ₃ P		
Chemical Shift (ppm)							

Figure S5. ¹H NMR of [^{*t*}BuOCO]Cr^VO(CH₂PPh₃) (**4**) in C₆D₆ with 0.01 mL THF- d_8 .

Figure S6. UV-vis of 4 in THF (0.057 mM, red; 0.113 mM, blue).

Figure S7. ¹H NMR of **3** (2.43 $\times 10^{-5}$ mol) in C₆D₆ (red) and with OPPh₃ (5.82 $\times 10^{-5}$) in C₆D₆ (blue).

3.53E+03 3.55E+03 3.57E+03 3.59E+03

Figure S8. Solution EPR spectra of a mixture of **2** and **2a** (5.0 x10⁻³ M) in toluene (blue) and a **2** and **2a** solution (1.6 x10⁻³ M) in toluene (blue) after addition of 6 equivalents of MeCN (red)