Electronic Supplementary Information (ESI) for Dalton Transaction

Accompanying the manuscript

Dinuclear and 1D iron(III) Schiff base complexes bridged by

4-salicylideneamino-1,2,4-triazolate: X-ray structures and magnetic properties.

Radovan Herchel, ^a Lubomír Pavelek^a and Zdeněk Trávníček*^b

^a Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu
12, CZ-771 46 Olomouc, Czech Republic
^b Regional Centre of Advanced Technologies and Materials, Department of Inorganic
Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc,
Czech Republic
* Corresponding author. Tel.: +420 585 634 352; fax: +420585 634 954; e-mail:

zdenek.travnicek@upol.cz (Zdeněk Trávníček).

Fig. S1 Variation of τ_3 parameter in Hsaltrz and saltrz anion according to Cambridge Crystalligraphic Database (CSD). τ_3 is defined as dihedral angle between the least-squares benzene and triazole planes of Hsaltrz/saltrz.

KICVUO	$[Ag_2(\mu-Hsaltrz)_2(CH_3CN)_2](ClO_4)_2$
KICWEZ	$[Ag_2(\mu-Hsaltrz)_2(Hsaltrz)_2](BF_4)_2 \cdot 2H_2O,$
KICWUP	$[Ag_2(\mu-Hsaltrz)_2(Hsaltrz)_2](NO_3)_2$
MEKGIT	$[Ag_4(\mu-Hsaltrz)_6(CH_3CN)_2](AsF_6)_4 \cdot 2H_2O$
HUKNUX	Hsaltrz
BUTDUQ	$[Zn(Hsaltrz)_2(SCN)_2]$
BUTFAY	[Co ₂ (µ-Hsaltrz) ₃ (Hsaltrz) ₂ (SCN) ₄]·H ₂ O
1'	$[{Fe(salen)(\mu-saltrz)}_2] \cdot CH_3OH \cdot (H_2O)_{0.5}$
2	$[{Fe(salpn)(\mu-saltrz)}_2]$
3'	$[{Fe(salch)(\mu-saltrz)} \cdot CH_3OH]_n$
4'	$[{Fe(salophen)(\mu-saltrz)} \cdot CH_3OH]_n$

Fig. S2 Part of the crystal structure of $[{Fe(salen)(\mu-saltrz)}_2] \cdot CH_3OH \cdot (H_2O)_{0.5}$ (1'), showing selected non-covalent contacts (dashed lines) and the cavities filled by solvent molecules, which are visualized using the space-filling model. (Parameters are given in Table S1).

Fig. S3 Part of the crystal structure of $[{Fe(salpn)(\mu-saltrz)}_2]$ (2), showing selected noncovalent contacts (dashed lines) of the the C–H···C, C–H···N and C–H···O (Parameters are given in Table S1).

Fig. S4 The H-bond formation (dashed line) between methanol and the salch anion in X-ray structure of $[{Fe(salch)(\mu-saltrz)} \cdot CH_3OH]_n$ (**3**') (Parameters are given in Table S1).

Fig. S5 Part of the crystal structure of $[{Fe(salch)(\mu-saltrz)} \cdot CH_3OH]_n$ (**3**'), showing selected non-covalent contacts (dashed lines) of the C–H···C and C–H···O types (Parameters are given in Table S1).

Fig. S6 The H-bond formation (dashed line) between methanol and salophen anion in X-ray structure of $[{Fe(salophen)(\mu-saltrz)} \cdot CH_3OH]_n$ (**4**') (Parameters are given in Table S1).

Fig. S7 Part of the crystal structure of $[{Fe(salophen)(\mu-saltrz)} \cdot CH_3OH]_n$ (**4**'), showing selected non-covalent contacts (dashed lines) of the C–H···C and C–H···O (Parameters are given in Table S1).

Fig. S8 Magnetic properties of 1. Left: temperature dependence of effective magnetic moment (calculated from the temperature dependence of magnetization at B = 0.1 T; inset). Right: the isothermal magnetizations measured at T = 2.0 and 4.6 K. Experimental data - circles, full lines - the best fit calculated using equation 1 with: J = -0.063 cm⁻¹, g = 2.09 and D = -0.55 cm⁻¹.

Fig. S9 Magnetic properties of 2. Left: temperature dependence of effective magnetic moment (calculated from the temperature dependence of magnetization at B = 0.1 T; inset). Right: the isothermal magnetizations measured at T = 2.0 and 4.6 K. Experimental data - circles, full lines - the best fit calculated using equation 1 with: J = -0.068 cm⁻¹, g = 2.03 and D = -0.58 cm⁻¹.

Fig. S10 Magnetic properties of 3 scaled per one Fe(III). Left: temperature dependence of effective magnetic moment (calculated from the temperature dependence of mean susceptibility at B = 0.1 T; inset). Right: the isothermal magnetizations measured at T = 2.0 and 4.6 K. Experimental data - circles, full lines - the best fit calculated using equation 3 with: J = -0.040 cm⁻¹, g = 2.06. Dotted line – theoretical magnetization calculated using Brillouin function for isolated S = 5/2.

Fig. S11 Magnetic properties of 4 scaled per one Fe(III). Left: temperature dependence of effective magnetic moment (calculated from the temperature dependence of mean susceptibility at B = 0.1 T; inset). Right: the isothermal magnetizations measured at T = 2.0 and 4.6 K. Experimental data - circles, full lines - the best fit calculated using equation 3 with: J = -0.091 cm⁻¹, g = 2.04. Dotted line – theoretical magnetization calculated using Brillouin function for isolated S = 5/2.

Fig. S12 Magnetic properties of **3** scaled per one Fe(III). Left: temperature dependence of effective magnetic moment (calculated from the temperature dependence of magnetization at B = 0.1 T; inset). Right: the isothermal magnetizations measured at T = 2.0 and 4.6 K. Experimental data - circles, full lines - the best fit calculated using equation 4 with: J = -0.022 cm⁻¹, g = 2.05 and D = -0.69 cm⁻¹.

Fig. S13 Magnetic properties of **4** scaled per one Fe(III). Left: temperature dependence of effective magnetic moment (calculated from the temperature dependence of magnetization at

B = 0.1 T; inset). Right: the isothermal magnetizations measured at T = 2.0 and 4.6 K. Experimental data - circles, full lines - the best fit calculated using equation 4 with: J = -0.072 cm⁻¹, g = 2.03 and D = -0.54 cm⁻¹.

Table S1 Hydrogen bonds and non-covalent contacts for 1'-4'

	D–HA	<i>d</i> (D–H)/Å	<i>d</i> (HA)/Å	d(DA)/Å	<(DHA)/°
1'	C18–H18AC16 ^a	0.9496(42)	2.8846(37)	3.6445(55)	137.819(262)
	C18–H18AC11 ^a	0.9496(42)	2.756(4)	3.6661(58)	160.825(265)
	C17N6 ^a			3.0106(51)	
	C22–H22AC22 ^b	0.9488(38)	2.8033(37)	3.5230(53)	133.370(237)
	C9–H9AO3 ^c	0.9888(39)	2.7043(24)	3.3328(46)	121.777(232)
	C8–H8AC7 ^c	0.9897(40)	2.7316(40)	3.6781(57)	160.201(248)
	C8–H8AC6 ^c	0.9897(40)	2.7545(37)	3.7020(54)	160.464(244)
	C8O3 ^d			3.0640(46)	
	C2–H2AC18 ^e	0.9492(40)	2.8849(41)	3.7487(58)	151.862(258)
	C2–H2A…N4 e	0.9492(40)	2.7253(33)	3.6243(53)	158.308(256)
					, , ,
2	C16–H16AC8 ^f	0.9497(36)	2.7858(36)	3.7221(52)	168.879(225)
	C19–H19AC8 ^f	0.9797(65)	2.7414(31)	3.5462(67)	139.765(302)
	C19–H19AN5 ^f	0.9797(65)	2.7247(27)	3.4115(62)	127.568(289)
	C8C7 ^g			3.1797(47)	
	C8–H8AC10 ^g	0.9494(36)	2.8597(31)	3.7121(47)	149.962(215)
	C8–H8AO1 ^g	0.9494(36)	2.5992(24)	3.4687(42)	152.441(217)
	C8–H8AO3 ^g	0.9494(36)	2.6348(25)	3.2452(43)	122.499(189)
3'	O4–H4WO2	1.0430(18)	1.8395(14)	2.8749(23)	171.286(111)
	C21–H21AC30 ^h	0.9900(18)	2.7208(28)	3.4919(33)	135.019(132)
	C21–H21AO4 ^h	0.9900(18)	2.6470(17)	3.3916(26)	132.143(128)
	C14–H14AC5 ⁱ	0.9506(18)	2.8585(20)	3.4863(27)	124.525(134)
	C12–H12AC27 ^j	0.9499(24)	2.8290(22)	3.6003(35)	139.003(152)
	C9–H9AC19 ^k	0.9495(21)	2.8420(23)	3.5864(33)	136.028(137)
	C4–H4AC14 ^l	0.9501(23)	2.7526(23)	3.6568(33)	159.303(136)
	C30–H30AC22 ^m	0.9802(28)	2.8627(18)	3.4645(31)	120.488(176)
	C8-H8AC30	0.9498(21)	2.5929(29)	3.4996(36)	159.777(143)
	C8–H8AO4	0.9498(21)	2.2416(19)	3.1706(28)	165.693(135)
	C30-H30CO1	0.9793(28)	2.3500(13)	3.0596(28)	128.723(174)
	O4–H4WC29	1.0430(18)	2.7923(20)	3.7764(27)	157.359(109)
4'	O4–H4WO2	0.9581(15)	1.8244(13)	2.7690(19)	168.088(107)
	C12–H12AC23 ⁿ	0.9501(25)	2.8400(21)	3.4050(32)	119.116(145)
	C12–H12AO4°	0.9501(25)	2.7006(18)	3.5319(32)	146.490(146)
	C3–H3AC27 ^{<i>p</i>}	0.9498(21)	2.8167(25)	3.4839(34)	128.102(145)
	C5C18 ^{<i>q</i>}			3.3404(30)	
	C5–H5AC4 ^r	0.9501(26)	2.8308(25)	3.6890(36)	150.738(147)
	C5–H5AC5 ^r	0.9501(26)	2.7618(24)	3.4558(36)	130.564(148)
	C7C16 ^{<i>q</i>}			3.3132(30)	
	C10C9 ^q			3.3489(32)	
	C9–H9AC1 ^{<i>q</i>}	0.9504(24)	2.8033(24)	3.7347(34)	166.702(146)
	C9–H9AO3 ^q	0.9504(24)	2.2587(15)	3.1833(28)	164.076(142)
	C20–H20AC10 ^s	0.9491(24)	2.8535(24)	3.6402(34)	140.976(147)
	C20–H20AC15 ^s	0.9491(24)	2.8436(22)	3.7769(33)	167.911(147)
	C23–H23AO4 ^s	0.9494(22)	2.5200(17)	3.4141(29)	156.995(137)
	C29–H29AO4 ^s	0.9493(24)	2.6863(15)	3.5344(27)	149.055(148)
	O4–H4WC10	0.9581(15)	2.717(2)	3.5287(25)	142.879(109)

Symmetry transformations used to generate equivalent atoms:

- ^{*a*}#1 1-x, 1-, -z #2 x, y, 1+z. ^b #1 3/2-x, 1/2-y, z #2 x-1/2, y+1/2, 1-z. ^c #1 x, 1/2-y, z-1/2 #2 1-x, 1/2-y, z+1/2. ^d #1 x, 1/2-y, z+1/2 #2 1-x, 1/2+y, 1/2-z. ^{*e*} #1 x, y, 1+z #2 1-x, 1-y, -z. ^{*f*}#1 x, y-1,z #2 1-x, 2-y, -z. ^{*g*} #1 -x, 1-y,-z #2 1+x, y, z. ^{*h*} x-1, 3/2-y, z-1/2. ^{*i*} 1+x, y, z. ^{*j*} 1-x, y-1/2, 3/2-z. k x, 3/2-y, 1/2+z.^{*l*} 1-x, 1-y, 1-z. ^{*m*} 1+x, 3/2-y, 1/2+z. ^{*n*} 1-x, y-1/2, 1/2-z. ^{*o*} 1-x, 1-y, -z. p -x, y-1/2, 1/2-z. ^{*q*} 1-x, 1-y, 1-z. ^r -x, 1-y, 1-z.
- ^s x, 3/2-y, z+1/2