Six new metal-organic frameworks with multi-carboxylic acids and imidazole-based spacer: syntheses, structures and properties

Feng Wang,^{‡a} Xiaohuan Ke,^{‡a} Jinbo Zhao,^a Kejian Deng,^b Xiaoke Leng,^a Zhengfang Tian,^c Lili Wen^{*a} and Dongfeng Li^{*a}

^a Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College

of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China. Fax:

+86 27 67867232; Tel: +86 27 67862900; E-mail: wenlili@mail.ccnu.edu.cn (L.

Wen), dfli@ccnu.edu.cn (D. Li)

^b Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs

Commission & Ministry of Education, South-Central University for Nationalities,

Wuhan 430074, P. R. China.

^c Huanggang Normal Univ, Coll Chem&Appl Chem, Huangguang 438000, P. R. China.

⁺These authors contributed equally to this work.

 Table S1 Selected bond lengths (Å) and bond angles (deg) for 1-6

				1 ^{<i>a</i>}					
Cu1-O1	2.927(2)	Cu1–O2	1.9204(19)	Cu1-N4A	1.9719	Cu1-O1B	2.927(2)	Cu1–O2B	1.9204(19)
Cu1-N4C	1.9719	Cu2–O3	1.9327(19)	Cu2-N1	1.971(2)	Cu2–O5D	2.680(2)	Cu2–O5E	2.680(2)
Cu2–O3F	1.9327(19)	Cu2 –N1F	1.971(2)	O1-Cu1-O1B	180.00	O2-Cu1-O2B	180.00	N4A-Cu1-N4C	180.00
O2B-Cu1-N4C	90.20	O2-Cu1-N4C	89.80	O1B-Cu1-N4A	98.15	O3-Cu2 -O3F	180.00	N1-Cu2-N1F	180.00
O5D-Cu2-O5E	180.00	O3-Cu2-N1	88.76(9)	O3F-Cu2-N1	91.25(9)	O5E-Cu2-N1	87.90(8)		
2^b									
Cu1-O1	2.501(2)	Cu1–O2	2.024(2)	Cu1-N1	2.014(3)	Cu1-O1A	2.501(2)	Cu1–O2A	2.024(2)
Cu1-N1A	2.014(3)	O1-Cu1-O1A	134.85(7)	O2-Cu1-O2A	98.66(9)	N1-Cu1-N1A	103.88(12)	O1A-Cu1-O2	93.54(8)
3^{c}									
Zn1–O1	1.947(5)	Zn1-N4	2.006(5)	Zn1-O9B	1.968(5)	Zn1-N8A	2.038(6)	Zn2-O4	1.935(4)
Zn2-06	1.955(4)	Zn2-N5	2.013(5)	Zn2-N1C	2.035(6)	O1-Zn1-N4	119.5(2)	O1-Zn1-O9B	101.4(2)
O1-Zn1-N8A	101.1(2)	O9B-Zn1-N4	117.4(2)	N4-Zn1-N8A	102.7(2)	O9B-Zn1-N8A	114.1(2)	O4-Zn2-O6	99.68(18)
O4-Zn2-N5	122.7(2)	O4-Zn2-N1C	107.9(2)	O6-Zn2-N5	109.3(2)	O6-Zn2-N1C	114.9(2)	N1C-Zn2-N5	103.0(2)
4^d									
Ni1-O1	2.119(2)	Ni1-O5	2.118(2)	Ni1-O7	1.988(2)	Ni1-O1A	2.119(2)	Ni1–O5A	2.118(2)
Ni1-O7A	1.988(2)	Ni2-01	2.125(2)	Ni2-O1W	2.150(2)	Ni2-08	2.018(2)	Ni2-N1	2.050(3)
Ni2–O5A	2.101(2)	Ni2-N4A	2.024(3)	O1-Ni1-O1A	180.00	O5-Ni1-O5A	180.00	O7-Ni1-O7A	180.00
01-Ni1-05	102.01(8)	01-Ni1-07	89.48(8)	O1W-Ni2-O8	168.67(9)	01-Ni2-N1	167.22(10)	N4A-Ni2-O5A	172.84(10)
5^e									
Ni1-O1	2.070(5)	Ni1-O2	2.095(5)	Ni1-O3	2.097(5)	Ni1-N1	2.093(5)	Ni1-N5	2.093(5)
Ni1-N3A	2.108(5)	N1-Ni-N3A	173.3(2)	O1-Ni1-O2	90.79(18)	O3-Ni1-N5	88.76(19)	O2-Ni1-N1	86.47(19)
6 ^f									
Cd1-O1	2.341(2)	Cd1-09	2.254(4)	Cd1-O1A	2.341(2)	Cd1-O3B	2.396(2)	Cd1-O4B	2.455(2)
Cd1-O3C	2.396(2)	Cd1-O4C	2.455(2)	O1-Cd1-O1A	158.93(8)	O3B-Cd1-O4B	53.87(7)	O3C-Cd1-O4C	53.87(7)
O3C-Cd1-O9	82.88(5)	O4B-Cd1-O9	134.89(5)	O3C-Cd1-O4B	139.86(7)				

^aSymmetry codes for **1**: (A) -*x*, 1/2+*y*, 3/2-*z*; (B) -*x*, 1-*y*, 3-*z*; (C) *x*, 1/2-*y*, 3/2+*z*; (D) *x*,

y, 1+z; (E) 1-x, 1-y, 1-z; (F) 1-x, 1-y, 2-z

^{*b*}Symmetry codes for **2**: (A) *x*, 3/2-*y*, 1/2-*z*

^cSymmetry codes for **3**: (A) 3/2-*x*, -1/2+*y*, 1-*z*; (B)3/2+*x*, 1/2-*y*, -*z*; (C)3-*x*, 1-*y*, -1+*z*

^{*d*}Symmetry codes for **4**: (A) 2-x, -y, 1-z

^{*e*}Symmetry codes for **5**: (A) -1+x, -1+y, *z*

^{*f*}Symmetry codes for **6**: (A) -*x*, *y*, -1/2-z; (B) -*x*, -*y*, -*z*; (c) *x*, -*y*, -1/2+z.

(a)

(b)

Fig. S1 (a) The asymmetric unit in **1**, (b) one-dimensional chain constructed from $obba^{2-}$ and Cu^{2+} , (c) 3-fold parallel interpenetration of the 3D nets in **1**.

Fig. S2 The one-dimensional chain constructed from $obba^{2-}$ and Cu^{2+} in **5**.

Fig. S3 The asymmetric unit in 6.

Fig. S4 The bimb moieties are located at an inversion center, which are included between the 1D chains in 6.

Fig. S5. X-ray power diffraction diagram of the simulated spectra from single crystal data of **1** (black) and compound **1** (red).

Fig. S6. X-ray power diffraction diagram of the simulated spectra from single crystal data of **2** (black) and compound **2** (red).

Fig. S7. X-ray power diffraction diagram of the simulated spectra from single crystal data of **3** (black) and compound **3** (red).

Fig. S8. X-ray power diffraction diagram of the simulated spectra from single crystal data of **4** (black) and compound **4** (red).

Fig. S9. X-ray power diffraction diagram of the simulated spectra from single crystal data of **5** (black), compound **5** (red), **5** after photocatalysis process (green).

Fig. S10. X-ray power diffraction diagram of the simulated spectra from single crystal data of **6** (black), compound **6** (red), **6** after photocatalysis process (green).

Fig. S11 TG curves of compounds 1-6.

Both Compounds 1 and 2 are stable up to 265 °C where the organic groups start to decompose. Compounds 3 and 4 also have demonstrated high thermal stabilities, which are stable up to 344 and 410 °C, respectively, where the framework structures begin to collapse. For 5, the weight loss of 17.10 % below 185 °C (calcd 17.73 %) corresponds to the loss of six coordinated aqua molecules, two free water molecules and two DMF guest moieties per formula. A plateau region is observed for 5 from 185 to 400 °C and consecutive decompositions suggest the total destruction of the framework. In addition, compound 6 is stable up to 200 °C.