Supporting Information for

Can a Meso-type Dinuclear Complex be Chiral?: Dinuclear β-Diketonato Ru(III) Complexes

Hisako Sato^{*a}, Ryoichi Takase,^b Yukie Mori^c and Akihiko Yamagishi^{*b}

^a Graduated School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan. Fax: +81-89-927-9599; Tel: +81-89-927-9599; Email: <u>sato.hisako.my@ehime-u.ac.jp</u>

^bDepartment of Chemistry, Toho University, Funabashi, Chiba 274-8510, Japan

^cDepartment of Chemistry, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610, Japan

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2011

Figure S1 (a). The HPLC chromatogram when a solution of dinuclear Ru(III) complex, [Ru(III)(acac)₂(dabe)Ru(III)(acac)₂], was eluted on a silica gel column (Inertsil, GL Science Inc., (Japan)) with a solvent of 9:1 (v/v) benzene-acetonitrile at a flow rate of 0.5 mlmin⁻¹. The eluted solution was monitored by the absorbance at 600 nm. Peaks F_1 , F_2 and F_3 were assigned to be meso-type, racemic and racemic dinuclear complexes, respectively (see text).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2011

Figure S1(b). The HPLC chromatogram when a solution of dinuclear Ru(III) complex, $[Ru(III)(acac)_2(tbet)Ru(III)(acac)_2]$, was eluted on a silica gel column (Inertsil, GL Science Inc., (Japan)) with a solvent of 95:5 (v/v) benzene-acetonitrile at a flow rate of 1 mlmin⁻¹. The eluted solution was monitored by the absorbance at 600 nm. Peaks F₁ and F₂ were assigned to be meso-type and racemic dinuclear complexes, respectively (see text).

Figure S2 (a). The observed mass spectrum of fraction F_1 in the chromatogram for $[Ru(III)(acac)_2(dabe)Ru(III)(acac)_2]$ (Figure S1(a)). The fractions F_2 and F_3 gave the same results: (m/z) obs: 919 (calc. 918.9).

Figure S2 (b). The observed mass spectrum of fraction F_1 in the chromatogram of $[Ru(III)(acac)_2(tbet)Ru(III)(acac)_2]$ (Figure S1(b)). The fractions F_2 gave the same results: (m/z) obs: 1044 (calc. 1043.0).

¹H NMR Data (400 MHz, CDCl₃):

[Ru(acac)₂(CH₃CN)₂]PF₆: δ = -26.45 (6H, CH₃), -22.62 (6H, CH₃), 37.09 (6H, CH₃)

dabeH₂: δ = 2.08 (6H, s, CH₃), 5.91 (2H, C-H), 7.57 (4H, t, J = 7 Hz), 7.67 (2H, tt, J = 7 and 0.6 Hz), 8.17 (4H, dd, J = 7 and 0.6 Hz)

tbet H₂: $\delta = 6.72$ (2H, s, CH), 7.36 (8H, t, J = 8 Hz), 7.50 (4H, t, J = 8 Hz), 7.91 (8H,d, J = 8 Hz)

Figure S3(a). ¹H NMR spectra of fractions F_1 , F_2 and F_3 in Figure S1(a) of $[Ru(III)(acac)_2(dabe)Ru(III)(acac)_2]$ (400 MHz, CDCl₃): meso-type (F₁) (lower); racemic (F₂) (middle); racemic (F₃) (upper).

Figure S3(b). ¹H NMR spectra of fractions F_1 and F_2 of $[Ru(III)(acac)_2(tbet)Ru(III)(acac)_2]$ (400 MHz, CDCl₃): meso-type (F₁) (lower); racemic (F₂) (upper).

The F1, F_2 Figure S4(a). HPLC chromatograms when fractions and F₃ of $[Ru(III)(acac)_2(dabe)Ru(III)(acac)_2]$ were eluted on a chiral column (4 mm (i.d.) × 25 cm) at a flow rate of 0.5 ml/min. The column was packed with an ion-exchange adduct of Δ -[Ru(phen)₃]²⁺ (phen = 1,10phenanthroline) and synthetic hectorite. The eluting solvent was 1:1(v/v) methanol/chloroform mixture. The elution was monitored at 600 nm.

Figure S4(b). The HPLC chromatogram when fraction F_2 of $[Ru(III)(acac)_2(tbet)Ru(III)(acac)_2]$ were eluted on the same chiral column. The eluting solvent was 1:1(v/v) methanol/chloroform mixture. The elution was monitored at 600 nm. Fraction F_1 gave a single peak under the same eluting conditions (not shown).

Figure S5. (a) The electronic circular dichroism spectra of racemic $[Ru(III)(acac)_2(tbet)Ru(III)(acac)_2]$. The solid and dotted (red) curves are for the $\Delta\Delta$ - and $\Lambda\Lambda$ -enantiomers, respectively. (b) The UV-vis spectra of meso-type (blue) and racemic-type (black) dimers, respectively. (c) The vibrational circular dichroism spectra of racemic $[Ru(III)(acac)_2(tbet)Ru(III)(acac)_2]$. The black and red curves are for the $\Delta\Delta$ - and $\Lambda\Lambda$ -enantiomers, respectively.

Figure S6(a). The UV-vis spectrum of a methanol solution of $\Delta\Lambda$ -[Ru(III)(acac)₂(dabe)Ru(III)(acac)₂]

Figure S7. The DFT-calculated VCD (upper) and IR (lower) spectra of $\Delta\Lambda$ -[Ru(III)(acac)₂(S-dabe)Ru(III)(acac)₂] for the theoretically optimized structure (right). The vertical axis is $\Delta\epsilon \times 10^4$ (left) and ϵ (right), respectively.