Electronic Supporting Information

Experimental and Computational Exploration of the Dynamic Behavior of (PNP)BF₂, a Boron Compound Supported By an Amido/Bis(Phosphine) Pincer Ligand

Jessica C. DeMott¹, Panida Surawatanawong¹, Shoshanna M. Barnett², Chun-Hsing Chen², Bruce M. Foxman², and Oleg V. Ozerov¹*

ozerov@chem.tamu.edu

¹Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77842.

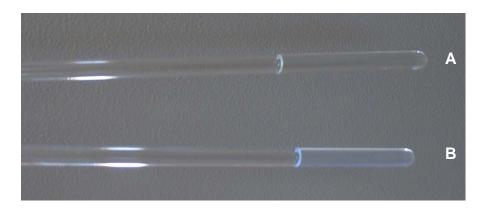

²Department of Chemistry, Brandeis University, MS 015, 415 South Street, Waltham, MA 02454

Table of Contents

General considerations	S3
NMR spectra and coupling constant determination	S 5
Exchange rate analysis	S14
Data on structures computed by DFT methods	S20
SI references	S23

General considerations. Unless otherwise noted, all manipulations and reactions were performed under argon, using standard glove box and Schlenk line techniques. Diethyl ether, toluene, pentane, and C₆D₆ were dried over and distilled from NaK/Ph₂CO/18-crown-6 and stored over molecular sieves in an Ar-filled glove box. CD₂Cl₂ was dried over CaH₂, vacuum transferred and stored over molecular sieves in an Ar-filled glove box. Me(PNP)H (4) was prepared according to literature procedure. All other chemicals were used as received from commercial vendors. NMR spectra were recorded on a Varian iNova 300 (¹H NMR, 299.951) MHz; ¹³C NMR, 75.426 MHz; ³¹P NMR, 121.422 MHz; ¹⁹F NMR, 282.211 MHz), Varian NMRS 500 (¹H NMR, 499.682 MHz; ¹³C NMR, 125.660 MHz; ³¹P NMR, 202.265 MHz; ¹⁹F NMR, 470.111 MHz) and Varian iNova 400 (11B NMR, 128.191 MHz). Chemical shifts are reported in δ (ppm). For ¹H and ¹³C NMR, the residual solvent peak was used to reference the spectra. ³¹P NMR spectra were referenced using 85% H₃PO₄ at δ 0 ppm. ¹⁹F NMR spectra were referenced using CF₃CO₂H at δ -78.5 ppm. ¹¹B NMR spectra were referenced using Et₂OBF₃ at δ 0 ppm. Temperatures reported for ¹¹B{1H} NMR spectra are based on readings from the Varian iNova 400 temperature controller. Temperatures reported for ³¹P{¹H}, ¹⁹F and ¹H NMR spectra were evaluated using a methanol standard. Crystallographic data were collected on a Bruker-Nonius Kappa Apex II CCD instrument. Elemental analysis was performed by Complete Analysis Laboratories Inc., Parsippany, NJ, USA.

Irradiation of 6. A concentrated solution of **6** was prepared in C_6D_6 in a J. Young NMR tube. The tube was placed in a UV box and radiated at 350 nm overnight. When exposed to the UV light, blue luminescence was observed. The radiated solution was bright orange in color and precipitation was observed after 16 h. NMR spectra displayed evidence of significant decomposition.

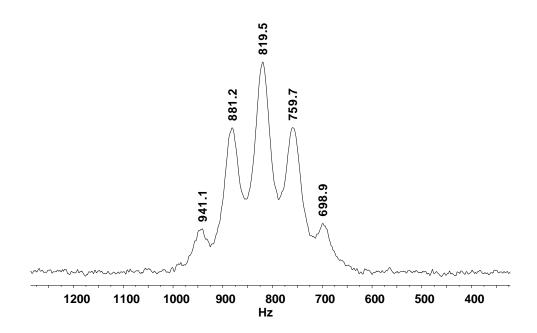


Figure S1. Comparison of luminescence observed for toluene solution of **6**, (B), against toluene control, (A), under ambient light.

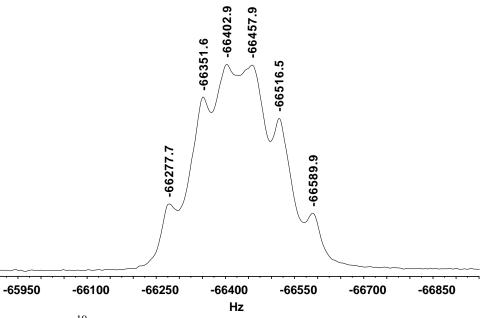


Figure S2. C₆D₆ solution of **6** in UV box, 350 nm.

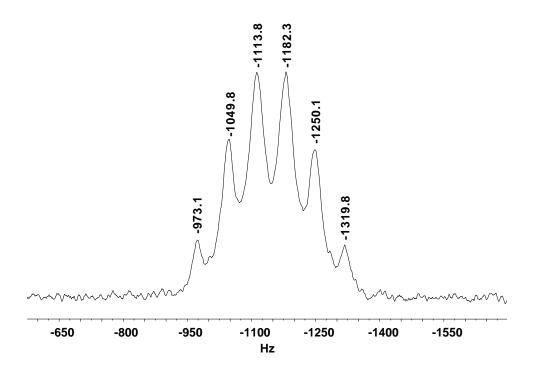
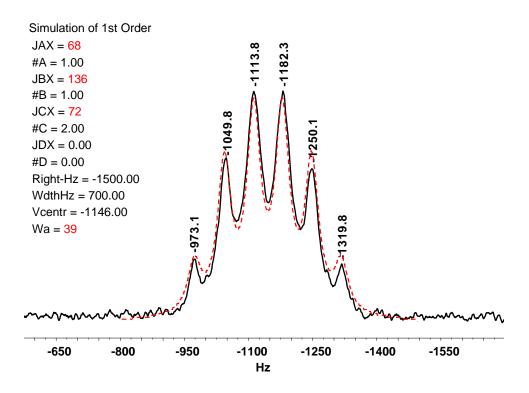
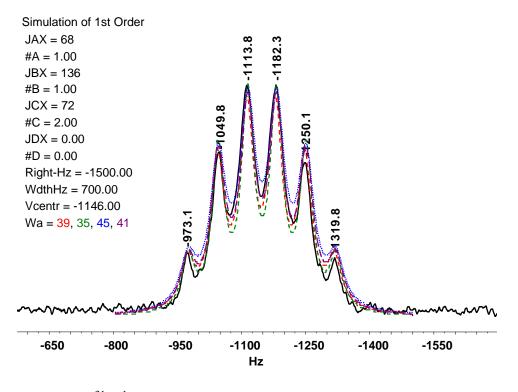
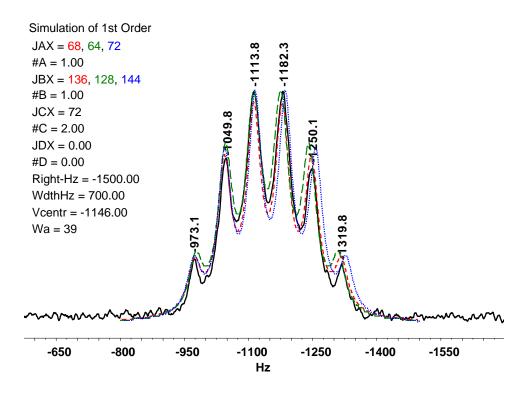

Room Temperature ¹¹B{¹H}, ¹⁹F, and ³¹P{¹H} NMR spectra

Figure S3. ¹¹B{¹H} NMR spectrum of **6** in CD₂Cl₂ at 23°C measured on a 400 MHz Varian iNova (¹¹B NMR frequency of 128.191 MHz).


Figure S4. ¹⁹F NMR spectrum of **6** in CD₂Cl₂ at 23°C measured on a 500 MHz Varian NMRS (¹⁹F NMR frequency of 470.111 MHz).


Figure S5. $^{31}P\{^{1}H\}$ NMR spectrum of **6** in $CD_{2}Cl_{2}$ at 23°C measured on a 500 MHz Varian NMRS (^{31}P NMR frequency of 202.265 MHz).

Determination of heteronuclear coupling constants, J_{P-B} and J_{P-F} , in 23°C $^{31}P\{^{1}H\}$ NMR spectrum using WinDNMR


Using the WinDNMR² simulation program, coupling constants for $^{31}P\{^{1}H\}$ were determined to be, $J_{P-B}=68\pm4$ Hz and $J_{P-F}=72$ Hz ±4 Hz. As shown below, three parameters were independently adjusted. The line width (Wa) was adjusted between 35-45 Hz. J_{AX} and J_{BX} were used to mimic the coupling to ^{11}B and J_{CX} was used to mimic the coupling to ^{19}F .

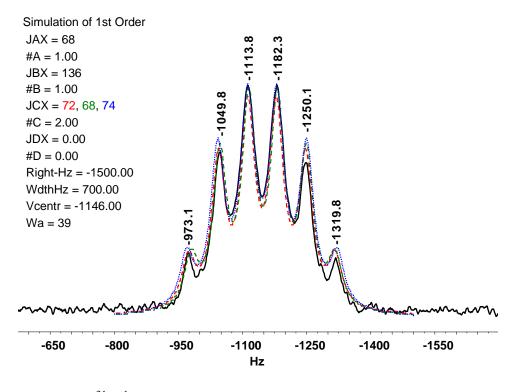
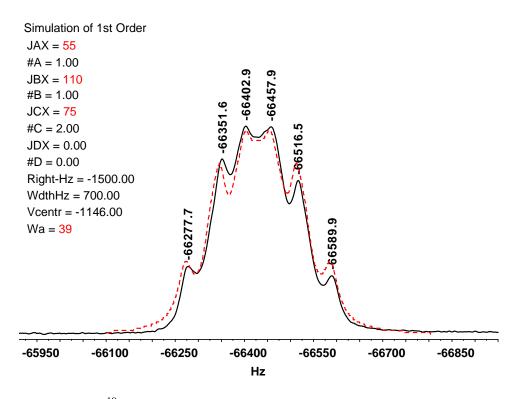
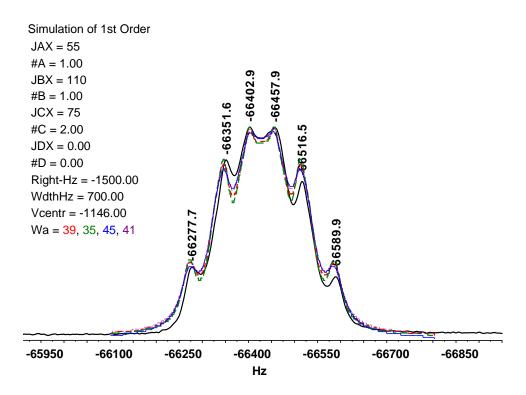
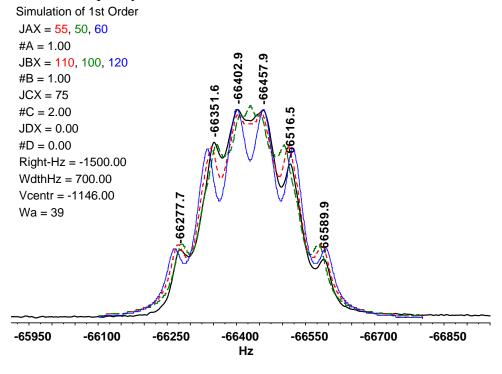

Figure S6. $^{31}P\{^{1}H\}$ NMR spectrum of **6** in CD₂Cl₂ at 23°C with overlay of simulated spectrum using ^{31}P NMR frequency of 202.265 MHz and $J_{P-B} = 68$ Hz, $J_{P-F} = 72$ Hz, Wa = 39 Hz.

Figure S7. $^{31}P\{^{1}H\}$ NMR spectrum of **6** in CD₂Cl₂ at 23°C with overlay of simulated spectra using ^{31}P NMR frequency of 202.265 MHz and $J_{P-B} = 68$ Hz, $J_{P-F} = 72$ Hz, Wa = 39-41 Hz.


Figure S8. $^{31}P\{^{1}H\}$ NMR spectrum of **6** in CD₂Cl₂ at 23°C with overlay of simulated spectra using ^{31}P NMR frequency of 202.265 MHz and $J_{P-B} = 64-72$ Hz, $J_{P-F} = 72$ Hz, Wa = 39 Hz.


Figure S9. $^{31}P\{^{1}H\}$ NMR spectrum of **6** in CD₂Cl₂ at 23°C with overlay of simulated spectra using ^{31}P NMR frequency of 202.265 MHz and $J_{P-B}=68$ Hz, $J_{P-F}=68$ -74 Hz, Wa = 39 Hz.

Determination of heteronuclear coupling constants, $J_{\text{F-B}}$ and $J_{\text{P-F}}$, in 23°C ¹⁹F NMR spectrum using WinDNMR


Using the WinDNMR simulation program, coupling constants for 19 F were determined to be approximately, $J_{\text{F-B}} = 55 \pm 5$ Hz and $J_{\text{P-F}} = 75 \pm 5$ Hz. As shown below, three parameters were independently adjusted. The line width (Wa) was adjusted between 35-45 Hz. J_{AX} and J_{BX} were used to mimic the coupling to 11 B and J_{CX} was used to mimic the coupling to 31 P.

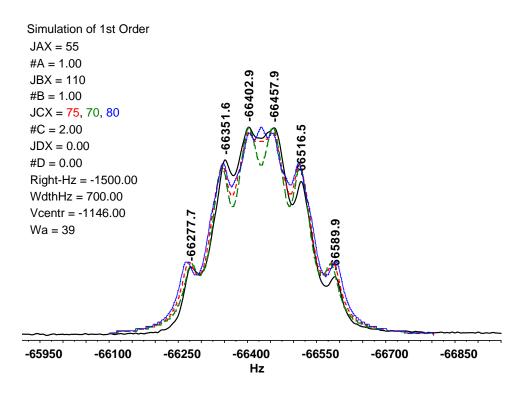
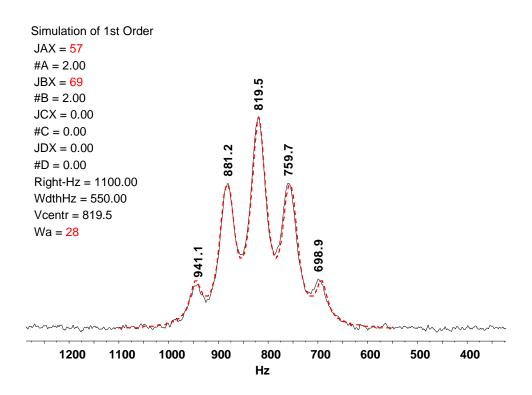
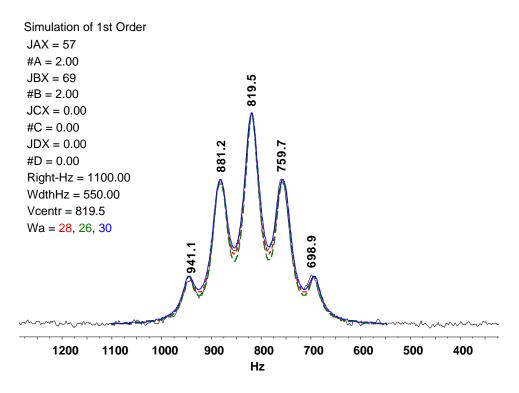
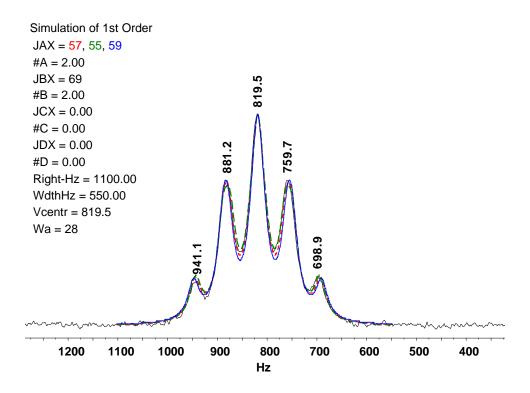

Figure S10. ¹⁹F NMR spectrum of **6** in CD₂Cl₂ at 23°C with overlay of simulated spectrum using ¹⁹F NMR frequency of 470.111 MHz and $J_{F-B} = 55$ Hz, $J_{P-F} = 75$ Hz, Wa = 39 Hz.

Figure S11. ¹⁹F NMR spectrum of **6** in CD₂Cl₂ at 23°C with overlay of simulated spectra using ¹⁹F NMR frequency of 470.111 MHz and $J_{F-B} = 55$ Hz, $J_{P-F} = 75$ Hz, Wa = 35-45 Hz.


Figure S12. ¹⁹F NMR spectrum of **6** in CD₂Cl₂ at 23°C with overlay of simulated spectra using ¹⁹F NMR frequency of 470.111 MHz and $J_{\text{F-B}} = 50\text{-}60$ Hz, $J_{\text{P-F}} = 75$ Hz, Wa = 39 Hz.


Figure S13. ¹⁹F NMR spectrum of **6** in CD₂Cl₂ at 23°C with overlay of simulated spectra using ¹⁹F NMR frequency of 470.111 MHz and $J_{\text{F-B}} = 55 \text{ Hz}$, $J_{\text{P-F}} = 70\text{-}80 \text{ Hz}$, Wa = 39 Hz.

Determination of heteronuclear coupling constants, $J_{\text{F-B}}$ and $J_{\text{P-B}}$, in 23°C $^{11}\text{B}\{^1\text{H}\}$ NMR spectrum using WinDNMR


Using the WinDNMR simulation program, coupling constants for 11 B were determined to be approximately, $J_{F-B} = 57 \pm 2$ Hz and $J_{P-B} = 69 \pm 2$ Hz with the line width (Wa) = 30 Hz. J_{AX} and J_{BX} were used to mimic the coupling to 19 F and 31 P, respectively.

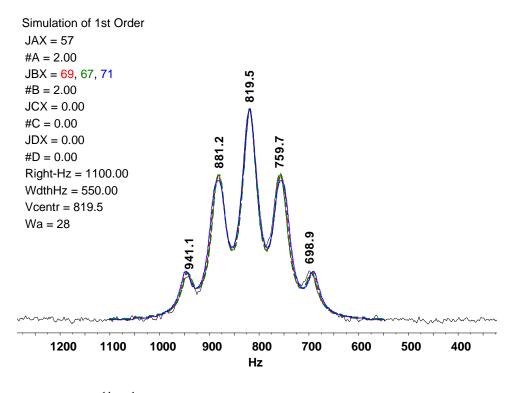

Figure S14. ¹¹B{ ¹H} NMR spectrum of **6** in CD₂Cl₂ at 23°C with overlay of simulated spectrum using ¹¹B NMR frequency of 128.191 MHz and $J_{F-B} = 57$ Hz, $J_{P-B} = 69$ Hz, Wa = 28 Hz.

Figure S15. ¹¹B{¹H} NMR spectrum of **6** in CD₂Cl₂ at 23°C with overlay of simulated spectra using ¹¹B NMR frequency of 128.191 MHz and $J_{\text{F-B}} = 57$ Hz, $J_{\text{P-B}} = 69$ Hz, Wa = 26-30 Hz.

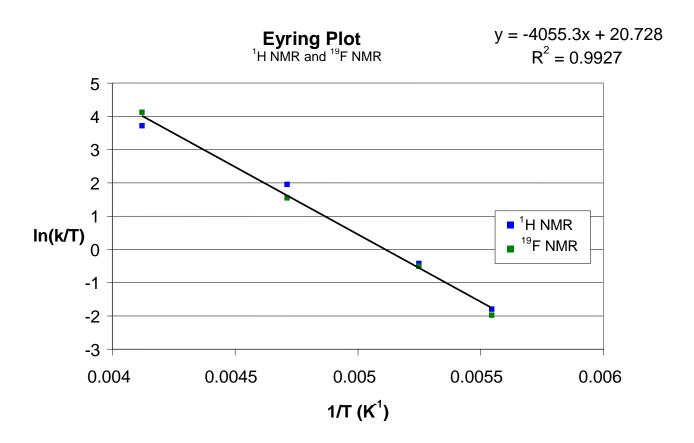


Figure S16. ¹¹B{¹H} NMR spectrum of **6** in CD₂Cl₂ at 23°C with overlay of simulated spectra using ¹¹B NMR frequency of 128.191 MHz and $J_{F-B} = 55-59$ Hz, $J_{P-B} = 69$ Hz, Wa = 28 Hz.

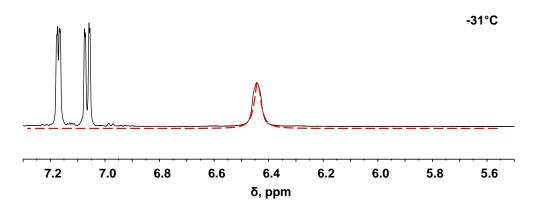
Figure S17. ¹¹B{¹H} NMR spectrum of **6** in CD₂Cl₂ at 23°C with overlay of simulated spectra using ¹¹B NMR frequency of 128.191 MHz and $J_{\text{F-B}} = 57$ Hz, $J_{\text{P-B}} = 67-71$ Hz, Wa = 28 Hz.

Exchange rate analysis of 6 from ¹H and ¹⁹F low temperature NMR studies

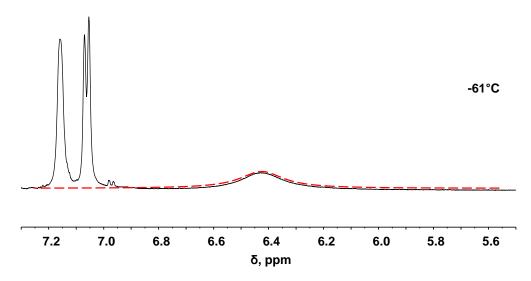
Figure S18. Eyring plot for exchange rate analysis from low temperature ¹H NMR and ¹⁹F NMR studies of **6.**

$$\ln\left(\frac{\mathbf{k}}{\mathbf{T}}\right) = \left(\frac{-\Delta \mathbf{H}^{\ddagger}}{\mathbf{T}}\right) \left(\frac{1}{\mathbf{T}}\right) + \ln\left(\frac{k_b}{h}\right) + \left(\frac{\Delta \mathbf{S}^{\ddagger}}{\mathbf{R}}\right)$$
$$k_b = 1.380 \times 10^{-23} \,\mathrm{J} \cdot \mathrm{K}^{-1}$$
$$h = 6.626 \times 10^{-34} \,\mathrm{J} \cdot \mathrm{s}$$
$$\mathbf{R} = 8.3145 \,\mathrm{J} \cdot \mathrm{K}^{-1} \mathrm{mol}^{-1}$$

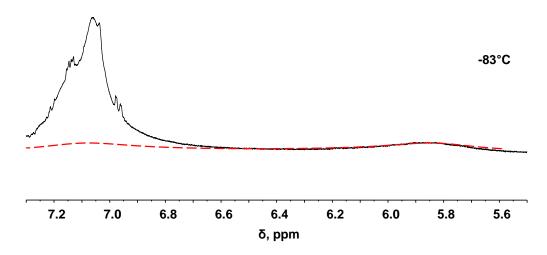
T (°C)	T (K)	Rate (s ⁻¹)	ln(k/T)	$1/T (K^{-1})$
-30.5	243	10000	3.72	0.0041
-60.9	212	1500	1.96	0.0047
-82.6	191	125	-0.42	0.0052
-92.8	180	30	-1.79	0.0055

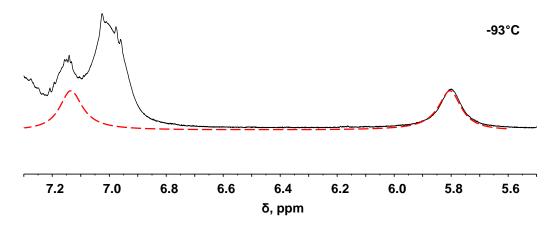

Table S1. Exchange rates found for -31°C thru -93°C from low temperature ¹H NMR studies of **6** and corresponding Eyring plot parameters.

T (°C)	T (K)	Rate (s ⁻¹)	ln(k/T)	1/T (K ⁻¹)
-30.5	243	15000	4.12	0.0041
-60.9	212	1000	1.55	0.0047
-82.6	191	115	-0.50	0.0052
-92.8	180	25	-1.98	0.0055


Table S2. Exchange rates found for -31°C thru -93°C from low temperature ¹⁹F NMR studies of **6** and corresponding Eyring plot parameters.

The approximate rates of fluxionality were determined from low temperature ${}^{1}H$ NMR (Table S1) and ${}^{19}F$ NMR studies (Table S2). An Eyring plot (Figure S18) was used to obtain the enthalpy and entropy of activation, $\Delta H^{\ddagger} = 8.1(3)$ kcal/mol and $\Delta S^{\ddagger} = -6.0(15)$ cal/mol·K, respectively. From these values, ΔG^{\ddagger} at 298 K was calculated to be 9.9(5) kcal/mol. The rates of exchange were determined through comparison of experimental data to simulated line shapes using gNMR software³ with an estimated 10% error based on the sensitivity of the fits to changes in the rates of exchange. An estimated error of 1 K was taken for the temperature of the NMR probe calibrated with a methanol temperature standard. Errors in ΔH^{\ddagger} and ΔS^{\ddagger} were determined using the error propagation formulas presented by Girolami et al.⁴


Comparison of experimental $^1\mathrm{H}$ NMR and $^{19}\mathrm{F}$ NMR spectral data to simulated line shapes using gNMR software


Figure S19. ¹H NMR (500 MHz) spectrum of **6** at -31°C with simulated ¹H NMR spectrum, shown in red, with k = 10,000 Hz.

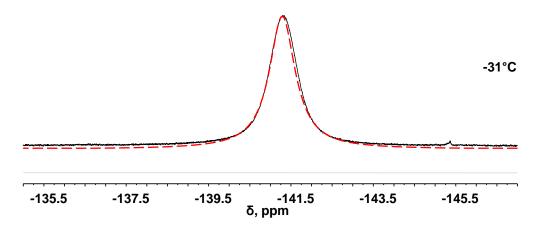
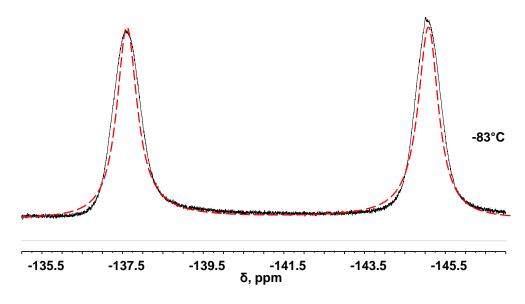

Figure S20. ¹H NMR (500 MHz) spectrum of **6** at -61°C with simulated ¹H NMR spectrum, shown in red, with k = 1500 Hz.

Figure S21. ¹H NMR (500 MHz) spectrum of **6** at -83°C with simulated ¹H NMR spectrum, shown in red, with k = 125 Hz.


Figure S22. ¹H NMR (500 MHz) spectrum of **6** at -93°C with simulated ¹H NMR spectrum, shown in red, with k = 30 Hz.

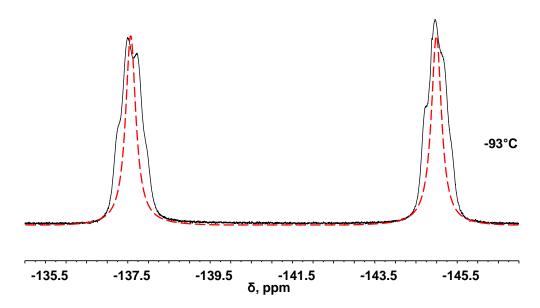

Figure S23. ¹⁹F NMR (470.111 MHz) spectrum of **6** at -31°C with simulated ¹⁹F NMR spectrum, shown in red, with k = 15,000 Hz.

Figure S24. ¹⁹F NMR (470.111 MHz) spectrum of **6** at -61°C with simulated ¹⁹F NMR spectrum, shown in red, with k = 1000 Hz.

Figure S25. ¹⁹F NMR (470.111 MHz) spectrum of **6** at -83°C with simulated ¹⁹F NMR spectrum, shown in red, with k = 115 Hz.

Figure S26. ¹⁹F NMR (470.111 MHz) spectrum of **6** at -93°C with simulated ¹⁹F NMR spectrum, shown in red, with k = 25 Hz.

Data on the structures computed by DFT methods

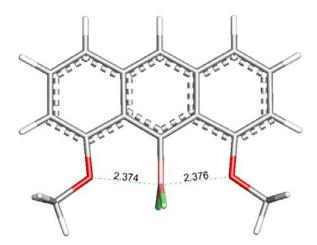
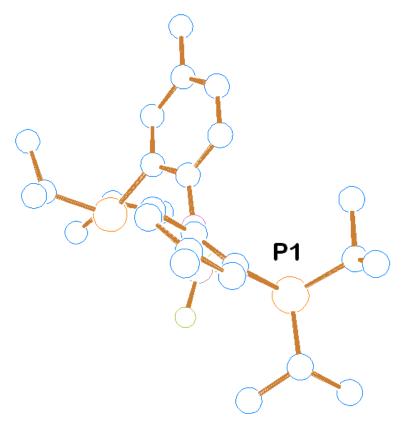



Figure S27. Calculated structure of 3.

Figure S28. View along the approximate direction of the lone pair of P in 6-sym demonstrating that the apparent directionality of the lone pair on P is not aligned with the boron atom.

Table S3. Calculated relative electronic energies, enthalpies, and free energies (kcal/mol) in gas phase for the $BF_2(PNP^*)$ complexes.

	ΔΕ	ΔH	ΔG
6-asym	0.00	0.00	0.00
6-asymTS	6.56	5.85	7.23
6-sym	4.48	4.73	4.85
8-asym	0.00	0.00	0.00
8-asymTS	5.32	4.69	6.50
8-sym	0.77	1.11	0.35
9-asym	0.00	0.00	0.00
9-sym	17.81	17.74	16.78
10-asym	0.00	0.00	0.00
10-symTS	7.71	7.17	7.44
11-asym	0.00	0.00	0.00
11-symTS	8.05	7.32	7.81
12-asym	0.00	0.00	0.00
12-asymTS	9.07	8.37	8.71
13-asym	0.00	0.00	0.00
13-symTS	8.43	7.75	8.06

	B-N (Å)	B-F (Å)	B-P (Å)	
6-asym	1.529	1.399	2.072	
		1.404	3.958	
6-sym	1.429	1.341	3.064	
6-asymTS	1.475	1.354	2.461	
		1.364	3.224	
8-asym	1.527	1.392	2.070	
		1.402	3.820	
8-sym	1.413	1.343	3.207	
8-asymTS	1.482	1.361	2.334	
		1.375	3.311	
9-asym	1.521	1.379	2.094	
		1.406	3.445	
9-sym	1.465	1.345	2.769	
			2.770	
10-asym	1.556	1.390	2.054	
		1.397	3.128	
10-symTS	1.475	1.345	2.765	
			2.766	
11-asym	1.567	1.389	2.050	
		1.391	3.116	
11-symTS	1.493	1.343	2.738	
			2.746	
12-asym	1.572	1.385	2.043	
		1.393	3.123	
12-asymTS	1.493	1.340	2.692	
		1.345	2.785	
13-asym	1.530	1.392	2.045	
		1.400	3.247	
13-symTS	1.464	1.345	2.788	

SI References

¹ L. Fan, B. M. Foxman, O. V. Ozerov, *Organometallics*, 2004, **23**, 326.

² H. J. Reich, WinDNMR: NMR Spectrum Calculations Version 7.1.13, 2008.

³ P. H. M. Budzelaar, gNMR: NMR Simulation Program Version 5.0.6.0, 2006.

⁴ P. M. Morse, M. D. Spencer, S. R. Wilson, G. S. Girolami *Organometallics*, 1994, **13**, 1646.