Electronic Supplementary Information

Syntheses, Crystal Structures, Reactivity, and Photochemistry of Gold(III) Bromides bearing N-heterocyclic Carbenes

Christa Hirtenlehner^a, Charlotte Krims^a, Johanna Hölbling^a, Manuela List^b, Manfred Zabel^c, Michel Fleck^d, Raphael J. F. Berger^e, Wolfgang Schoefberger^a, Uwe Monkowius^{a,*}

^aInstitut für Anorganische Chemie, Johannes Kepler Universität Linz, Altenbergerstr. 69, A-4040 Linz, Austria
^bInstitut für Chemische Technologie Organischer Stoffe, Johannes Kepler Universität Linz, Altenbergerstr. 69, A-4040 Linz, Austria
^cZentrale Analytik der Universität Regensburg, Röntgenstrukturanalyse, Universitätsstr. 31, D-93053 Regensburg, Germany
^dGeozentrum – Universität Wien, Institut für Mineralogie und Kristallographie, Althanstr. 9, 1090 Wien, Austria
^eMaterialwissenschaften und Physik, Abteilung Materialchemie, Paris-Lodron Universität Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2011

1D- and 2D-NMR spectra of complex 7b:

Fig. S1: ¹H NMR spectrum of **7b** in DMSO-d₆ a) full region and b) aromatic region

(∇ - trans-anti, Δ – trans-syn)

Fig. S2: ¹H-¹H NOESY spectrum of **7b** in DMSO-d₆ (full region)

Fig. S3: ¹H-¹³C HSQC spectrum of **7b** in d₆-DMSO (full region)

Optimized geometry of the cation [(**BnMeIm**)₂**AuBr**₂]⁺

Fig. S4: Optimized geometry of $[(BnMeIm)_2AuBr_2]^+$ (DFT calculation using the COSMO model). Selected bond lengths (Å) and angles (°): Au1–C1 2.047, Au1–C2 2.047, Au1–Br1 2.438, Au1–Br2 2.437, C1–Au1–C2 179.26, Br1–Au1–Br 2 179.64, N1-C1-C2-N3 13.50.

xyz-coordinates of the geometry optimized structure

53 Au -0.0860481 -0.9625277 0.0290779 -0.2621318 -2.2179293 -2.0522692 Br 0.0890672 0.2803921 2.1194331 Br 0.8480328 Ν -2.8879864 -1.7676018 Ν -2.9647208 -0.0322837 -0.4100926Ν 2.7208593 -2.0855678 0.2413394 Ν 2.7824872 -0.0999551 -0.5689127 -0.9068717 С -2.1283505 0.1617475 С -2.3900257 -2.8834361 1.6309039 С -4.2131161 -1.4354821 0.7091776 С -4.2632813 -0.3429590 -0.0832468 С -2.5841102 1.0730199 -1.2839439 С -3.1088988 2.3963719 -0.8021411 С -4.0022556 3.1157046 -1.5860179 С -4.4839924 4.3451684 -1.1544613 С -4.0763600 4.8597010 0.0670170 С -3.1830882 4.1438389 0.8557015 С 2.9196986 0.4223438 -2.7007703 С 1.9553877 -1.0443574 -0.1034141 С 2.2363250 -3.3341441 0.8003238 С 4.0395715 -1.8005669 -0.0128387 С 4.0800669 -0.5513701 -0.5254232 С 2.3739539 1.1956910 -1.1096187 С 3.2639182 2.3169897 -0.6551418 С 4.0700959 2.9803615 -1.5720088 С 4.8891194 4.0245925 -1.1613753 С 4.9074609 4.4083740 0.1711332 С 4.1027975 3.7484657 1.0927559 С 3.2840324 2.7094349 0.6813289 Η -1.7589532 -2.5196253 2.4402539 -1.8271053 -3.5645288 0.9945196 Η Η -3.2392965 -3.4139699 2.0515967 Η -4.9963245 -2.0019297 1.1823369 Η -5.0995020 0.2343875 -0.4374686

Н	-2.9528560	0.8600318	-2.2872812
Н	-1.4951484	1.0780473	-1.3307570
Н	-4.3228281	2.7133083	-2.5405381
Н	-5.1802375	4.8981526	-1.7734993
Н	-4.4525531	5.8173408	0.4065090
Н	-2.8592573	4.5428940	1.8094201
Н	-2.0030172	2.3660456	1.0418978
Н	1.6653673	-3.1405351	1.7069181
Н	1.6163995	-3.8541836	0.0716563
Н	3.0928815	-3.9540929	1.0490307
Н	4.8267356	-2.5036800	0.1971619
Н	4.9103788	0.0496662	-0.8520526
Н	1.3485780	1.3633211	-0.7796359
Н	2.3697473	1.1312195	-2.1979546
Н	4.0557401	2.6807023	-2.6140097
Н	5.5135193	4.5360067	-1.8841326
Н	5.5459985	5.2220715	0.4936383
Н	4.1108895	4.0481609	2.1338742
Н	2.6551599	2.1998333	1.4034962

Molecular structures obtained from the reactivity studies with 3b and 7c

Fig. S5: Molecular structure of [(Bn₂Im)₂Au]NO₃.The nitrate anion is disordered over two postions (occupancy 52:48). Only one position is depicted. Selected bond lengths (Å) and angles (deg): Au1–C1 2.006(5), Au1–C18 2.025(5), C1–Au1–C18 178.2(2), N1–C1–C18–N3 10.2(8).

Bn₂ImAuSPh:

Fig. S6: Molecular structure of $(Bn_2Im)AuSPh$ obtained from the reaction of $(Bn_2Im)AuBr_3$ with three equivalents of NaSPh. Selected bond lengths (Å) and angles (deg): Au1–C1 1.99(2), Au1–S1 2.297(4), C1–Au1–S1 179.5(4), Au1–S1–C18 108.1(5), N1–C1–S1–C18 42(1), Au1–S1–C18–C23 7(1).

Molecular structure of [(Bn₂Im)₂Au]Cl, 6c

Fig S7: Molecular structure of [(Bn₂Im)₂Au]Cl. Selected bond lengths (Å) and angles (deg): Au1–C1 2.038(9), Au1–C18 2.032(7), C1–Au1–C18 178.0(3), N1–C1–C18–N3 9.3(9).

[(Bn₂Im)₂Au]BF₄

Fig. S8: Molecular structure of $[(Bn_2Im)_2Au]BF_4$. Selected bond lengths (Å) and angles (deg): Au1-C1 2.019(4), Au1-C18 2.033(4), C1-Au1-C18 178.4(2), N1-C1-C18-N3 5.8(5).

Table S1. Crystal date	a, data collection and	d structure refineme	nt for compounds (Bn	12Im)AuSPh and [(Bn2	Im)2Au]4
	(Bn ₂ Im)AuSPh	[(Bn ₂ Im) ₂ Au]Cl	[(Bn ₂ Im) ₂ Au]BF ₄	[(Bn2Im)2Au]NO3	
Formula	$C_{23}H_{21}N_2SAu$	$C_{34}H_{32}N_{4}AuCl$	$C_{34}H_{32}N_4AuBF_4$	$C_{34}H_{32}N_5AuO_3$	
M_{W}	554.44	729.05	780.41	755.61	
Crystal size [mm]	$0.70 \times 0.54 \times 0.47$	$0.45 \times 0.25 \times 0.22$	$0.64 \times 0.55 \times 0.50$	$0.70 \times 0.55 \times 0.42$	
Crystal system	triclinic	monoclinic	monoclinic	monoclinic	
Space group	<i>P</i> -1	$P2_1/n$	$P2_1/n$	$P2_1/n$	
<i>a</i> [Å]	8.1925(5)	14.9584(14)	15.1243(7)	15.1417(14)	
p [Å]	9.3756(6)	11.0038(11)	11.4996(5)	11.1604(10)	
c [Å]	13.6642(8)	17.8290(15)	18.1831(8)	18.1484(17)	
α [₀]	73.838(2)	06	06	06	
β [°]	81.532(2)	92.788(3)	91.4040(10)	92.617(3)	
λ [°]	82.739(2)	06	60	90	
$V[\Lambda^3]$	993.04	2931.2(5)	3161.5(2)	3063.7(5)	
$\rho_{calc} [g cm^{-3}]$	1.854	1.652	1.640	1.638	
Ζ	2	5	5	4	
µ [mm ⁻¹]	7.52	5.14	4.71	4.85	
T [K]	205	300	300	200	
⊖ range [°]	2.4 - 25.0	2.9 - 25.0	2.9 - 25.0	3.2 - 25.0	

A (A = Cl⁻, BF₄⁻, NO₃⁻).

0.82 / -0.50

1.15 / -0.88

3.67 / -1.04

4.34 / -3.09

σ_{fin} (max/min) [eÅ⁻³]

 T_{\min}, T_{\max}

*R*₁ [I≥2σ(I)]

0.081 0.207

0.026 0.065

0.031 0.072 830165

830163

830164

830166

CCDC number

 wR_2

0.133 0.047

multi-scan 0.13, 0.24

multi-scan 0.15, 0.20

multi-scan 0.21, 0.40

multi-scan 0.08, 0.13

Absorption correction

411/32

397

361

220

Parameters refined

/restraint

 $\left[I > 2 \ \sigma(I) \right]$

19332

30219

18213

9760 3463 3001

Reflections collected

Observed reflections

Unique reflections

5110 3878

4114 5405

4836 5579

Fig. S9: UV-Vis spectra of methanolic solutions of $Bn_2ImAuBr$ (c = 2.1 10⁻⁵ mmol/L) and $Bn_2ImAuBr_3$ (c = 1.5 10⁻⁵ mmol/L).

Fig. S10: UV-Vis spectra of methanolic solutions of BnMeImAuBr (c = $5.3 \ 10^{-5} \ mol/L$) and BnMeImAuBr₃ (2.5 $10^{-5} \ mol/L$).

Fig. S11: UV-Vis spectra of methanolic solutions of $[(BnMeIm)_2Au]Br$ (2.4 10⁻⁵ mol/L) and $[(BnMeIm)_2AuBr_2]Br$ (2.3 10⁻⁵ mol/L).

Fig. S12: UV/Vis spectrum of K[AuBr₄] in MeCN.

Fig. S13: Irradiation of $Bn_2ImAuBr_3$ in methanolic solution (c = 1.5 10^{-5} mmol/L) with polychromatic light > 280 nm.

Fig. S14: Irradiation of $[(BnMeIm)_2AuBr_2]Br$ in methanolic solution (c = 2.4 10⁻⁵ mmol/L) with polychromatic light > 280 nm.

Fig. S15: Irradiation of BnMeImAuBr₃ in methanolic solution ($c = 2.5 \ 10^{-5} \ mol/L$) with polychromatic light > 280 nm.

Fig. S16: Irradiation of $Bn_2ImAuBr_3$ in DMSO solution (c = 5.6 10⁻⁵ mol/L) with polychromatic light > 280 nm.

Fig. S17: Excerpt from the ¹H-NMR spectrum depicting the photoreduction of the complex **4b** in DMSO upon irradiation with monochromatic light ($\lambda = 300$ nm).

Fig. S18: ESI mass spectra of a solution of compound **7b** in MeOH before (top) and after 18 min (bottom) irradiation at $\lambda = 300$ nm.

Fig. S19: ESI mass spectra of a solution of compound 7a in MeOH before (top) and after 15 min (bottom) irradiation at $\lambda = 300$ nm.

Fig. S20: Spectral changes of the absorptions spectrum of Br₂ in DMSO at r.t.

Fig. S21: ¹H-NMR spectrum (200 MHz, DMSO) of (BnMeIm)AuI₂Br (× - DCM)

Fig. S22: UV-Vis spectrum of **5** in acetonitrile ($c = 1.4 \ 10^{-5} \ mol/L$).