Electronic Supporting Information:

Encapsulation of trivalent phosphate anion within a rigidified π -stacked dimeric capsular assembly of tripodal receptor

Sandeep Kumar Dey and Gopal Das*

Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781 03, India,.

Fax: +91-361-258-2349; Tel: +91-361-258-2313

E-mail: gdas@iitq.ernet.in

1.	Experimental section	S-2
2.	X-ray crystallography table	S-3
3.	Crystal structure of complexes 1 and 2	S-4
4.	Table for H-bond interactions of complexes 1 and 2	S-5
5.	Characterization of receptor L and complexes 1 and 2	S-7
6.	¹ H NMR titration of L with $H_2PO_4^-$ ions and jobs plot	S-12
7.	¹ H NMR titration of L with F ⁻ ions and jobs plot	S-14
8.	¹ H NMR titration of L with AcO ⁻ ions and jobs plot	S-15
9.	¹ H NMR titration of L with HSO ₄ ⁻ ions and jobs plot	S-16
10.	¹ H NMR titration of L with Cl ⁻ ions and jobs plot	S-17

Experimental Section:

¹H and ¹³C NMR spectra were recorded on a Varian FT-400 MHz spectrometer in DMSO- d_6 at 298 K. Chemical shifts for ¹H and ¹³C NMR were reported in parts per million (ppm), calibrated to the residual solvent peak set, with coupling constants reported in Hertz (Hz). The IR spectra were recorded on a Perkin-Elmer-Spectrum One FT-IR spectrometer with KBr disks in the range 4000-450 cm⁻¹. All tetrabutylammonium (TBA) salts used were purchased from Sigma-Aldrich, USA and were used as received. Solvents used for the synthesis and crystallization experiments (THF and MeCN) were of HPLC grade and purchased from Spectrochem Ltd., India.

Synthesis of tris-(thiourea) receptor, L:

Tripodal thiourea-based receptor, **L** was synthesized by the reaction of tris(2-aminoethyl)amine with three equivalents of 4-nitrophenyl isothiocyanate in THF by stirring overnight at RT. After overnight stirring, solvents were removed under *vacuo* and the obtained solid product was washed with plenty methanol to remove the unreacted reagents. Finally, the product was filtered and dried under vacuum to yield yellow solid of **L** (Yield = 84%). The ligand has been characterized by NMR, FT-IR, ESI-MS and elemental analysis. Single crystals of **L** suitable for X-ray diffraction analysis were grown from DMF at RT.

¹H NMR titration experiments:

Binding constants were obtained by ¹H NMR (400 MHz) titrations of **L** with tetrabutylammonium salts of respective anions in DMSO- d_6 at 298 K. The initial concentration of corresponding receptor was 10 mM. Aliquots of anions were added from 50 mM stock solutions of anions (up to 1:3 or 1:5 host/guest stoichiometries). The residual solvent peak in DMSO- d_6 (2.50 ppm) was used as an internal reference, and each titration was performed with 10-15 measurements at room temperature.

Following equation was used to determine the K values:¹

 $\Delta \delta = \{([A]_0 + [L]_0 + 1/K) + /- (([A]_0 + [L]_0 + 1/K)^2 - 4[L]_0[A]_0)^{1/2}\} \Delta \delta_{\max}/2[L]_0$

Parameters	L•DMF	Complex 1	Complex 2
formula	$C_{30}H_{37}N_{11}O_7S_3$	$C_{106}H_{174}N_{25}O_{16}PS_6$	$C_{45}H_{69}FN_{12}O_6S_3$
Mr	759.92	2278.09	989.33
Lattice system	Triclinic	Triclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
a/Å	9.3675(5)	13.5840(7)	13.0874(4)
b/Å	10.4400(6)	16.0821(8)	13.1320(4)
c/Å	19.5297(11)	28.9547(15)	35.7500(11)
$\alpha/^{\circ}$	94.671(4)	103.421(4)	79.965(2)
β/ ^o	92.962(4)	93.523(4)	86.542(3)
γ/ [°]	110.626(3)	92.808(4)	60.285(2)
V/Å ³	1774.95(18)	6128.0(6)	5252.1(3)
Ζ	2	2	4
$D_c/\text{g cm}^{-1}$	1.422	1.235	1.251
μ Mo K _a /mm ⁻¹	0.271	0.194	0.201
2 theta	28.340	28.460	28.360
Total reflections	24704	92714	49038
Independent reflections	8599	29779	25528
Observed reflections	6935	24513	21878
Parameters refined	463	1401	1217
R_1 ; w R_2 (all data)	0.0890; 0.2071	0.0860; 0.2158	0.0875; 0.2076
$GOF(F^2)$	1.061	1.067	1.0061

Table S1. Crystallographic	details of data collec	tion for receptor L a	nd complexes 1 and 2 .
	actuils of auta conce		

Figure S1. Ball and stick representation of crystal structure of **L**•**DMF** depicting the interactions (blue dotted lines) of the receptor molecules with lattice DMF (green).

Figure S2. Ball and stick representation of crystal structure of **1** depicting the interactions (blue dotted lines) of the –NH and aryl –CH protons with phosphate anion when the $d(D \bullet \bullet A)$ is restricted to < 3.5 Å for H-bonding; (a) axial **L** coordinating to PO₄³⁻ and (b) facial **L** coordinating to PO₄³⁻.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \circledcirc The Royal Society of Chemistry 2011

Figure S3. Spacefill representation depicting the full encapsulation of trivalent phosphate anion within the π -stacked dimeric cage of receptor **L**. Two symmetry independent molecules are shown in different colours and countercations are omitted for clarity of presentation.

Figure S4. Ball and stick representation depicting the six H-bonding interactions of F⁻ within the tripodal cavity of two symmetry independent units of **L**. Countercations and solvent molecules are omitted for clarity of presentation.

Figure S5. Spacefill representation depicting the encapsulation of fluoride anion within the tripodal scaffold of two symmetry independent **L** units assembled by C-H••• π and π ••• π interactions.

Complex 1, 3TBA[2L(PO ₄)]•2MeCN				
When <i>d</i> (D•••A) < 3.00 Å for H-bonding				
D-H••••O	d(H∙∙∙•O)/Å	d(D∙∙∙•O)/Å	<d-h••••0 td="" °<=""></d-h••••0>	
N2-H••••013	1.92(2)	2.781(4)	178(2)	
N5-H●●●O13	1.93(3)	2.730(5)	154(3)	
N8-H●●●O13	1.90(2)	2.733(4)	161(3)	
N9-H••••O14	2.05(2)	2.862(5)	156(3)	
N12-H••••014	2.06(3)	2.908(4)	166(2)	
N19-H••••O14	1.86(2)	2.721(4)	170(2)	
N3-H••••015	1.97(2)	2.776(4)	153(2)	
N13-H••••015	1.89(3)	2.749(5)	174(2)	
N15-H••••015	1.96(2)	2.792(4)	162(2)	
N6-H••••016	2.02(3)	2.872(4)	167(3)	
N16-H••••016	2.00(2)	2.823(4)	158(3)	
N18-H••••016	2.01(2)	2.844(4)	160(2)	
When <i>d</i> (D•••A) < 3.50 Å for H-bonding				
N3-H••••013	2.69(2)	3.403(4)	141(2)	
N9-H••••013	2.71(3)	3.393(4)	137(3)	
N18-H••••014	2.71(3)	3.339(4)	131(2)	
C27-H••••014	2.62(3)	3.333(5)	133(3)	
C50-H••••014	2.56(2)	3.284(5)	134(3)	
C9-H••••O15	2.54(2)	3.164(5)	124(3)	
C45-H••••016	2.69(3)	3.423(6)	135(4)	

Table S2. Hydrogen bonding interactions of PO_4^{-3} within the dimeric cage of **L** in complex **1**.

Complex 2 , TBA[L (F)]•MeCN			
D-H••••O	d(H∙∙∙•O)/Å	<i>d</i> (D∙∙∙•0)/Å	<d-h••••0 td="" °<=""></d-h••••0>
N2-H••••F1	2.15(2)	2.910(4)	146(2)
N3-H••••F1	1.88(2)	2.729(4)	166(2)
N5-H••••F1	2.19(2)	2.937(5)	145(3)
N6-H••••F1	1.88(3)	2.730(5)	169(3)
N8-H••••F1	2.10(2)	2.874(4)	148(3)
N9-H••••F1	1.91(2)	2.749(3)	163(3)
N12-H•••F2	2.12(2)	2.882(4)	147(2)
N13-H••••F2	1.90(3)	2.743(5)	164(2)
N15-H•••F2	2.21(2)	2.956(4)	145(2)
N16-H•••F2	1.88(2)	2.731(3)	168(2)
N18-H••••F2	2.13(2)	2.894(4)	148(3)
N19-H••••F2	1.90(2)	2.744(5)	166(3)

Table S3. Hydrogen bonding interactions of F^- with receptor **L** in complex **2**.

Characterization of receptor L:

m.p. = 225-230 °C; ¹H-NMR (400 MHz, DMSO- d_6) δ 2.814 (s, 6H, -NCH₂), 3.660 (s, 6H, -NCH₂CH₂), 7.764-7.787 (d, 6H, ArH), 8.127-8.149 (d, 6H, ArH), 8.174 (s, 3H, -CH₂NH), 10.205 (s, 3H, Ar-NH); ¹³C NMR (100 MHz, DMSO- d_6): δ 41.90 (×3C, -NCH₂), 51.62 (×3C, -NCH₂CH₂), 120.38 (×6C, ArH), 124.52 (×6C, ArH), 141.78 (×3C, ArH), 146.25 (×3C, ArH), 179.95 (×3C, C=S); ESI-MS: m/z [L+H]⁺ 687.1639; FT-IR (KBr, υ cm⁻¹): 715, 1112, 1334, 1510, 2927, 3339; Anal. Calcd for C₃₀H₃₇N₁₁O₇S₃: C, 47.22; H, 4.40; N, 20.39. Found: C, 47.34; H, 4.18; N, 19.87.

Figure S6. ¹H NMR spectrum of **L** in DMSO- d_6 at 298 K.

Figure S7. ¹³C NMR spectrum of **L** in DMSO- d_6 at 298 K.

Figure S8. Positive ion mode ESI-mass spectrum of L in acetonitrile.

Figure S9. FT-IR spectrum of receptor L recorded in KBr pellet.

Characterization of phosphate complex, 1:

¹H-NMR (400 MHz, DMSO- d_6) δ 0.928-0.966 (t, -CH₃, TBA), 1.285-1.358 (q, -CH₂, TBA), 1.559-1.577 (t, -CH₂, TBA), 3.046-3.087 (t, -NCH₂, TBA), 1.933-1.959 (q, CH₃CN), 2.703 (s, 12H, -NCH₂), 3.507 (s, 12H, -NCH₂CH₂), 7.746-7.807 (q, ArH), 11.935 (s, 6H, -CH₂NH), 12.998 (s, 6H, Ar-NH); ¹³C NMR (100 MHz, DMSO- d_6): δ 13.85 (×12C, -CH₃, TBA), 20.37 (×12C, -CH₂, TBA), 24.35 (×12C, -CH₂, TBA), 59.37 (×12C, -NCH₂, TBA), 44.30 (×6C, -NCH₂), 56.65 (×6C, -NCH₂CH₂), 121.17 (×12C, ArH), 124.33 (×12C, ArH), 141.82 (×6C, ArH), 149.85 (×6C, ArH), 181.73 (×6C, C=S); FT-IR (KBr, υ cm⁻¹): 1009, 1110, 1277, 1327, 1510, 1561, 2964, 3440.

Figure S10. ¹H NMR spectrum of phosphate complex (1) in DMSO- d_6 at 298 K.

Figure S12. FT-IR spectrum of phosphate complex (1) recorded in KBr pellet.

Characterization of fluoride complex, 2:

¹H-NMR (400 MHz, DMSO- d_6) δ 0.915-0.951 (t, -CH₃, TBA), 1.282-1.335 (q, -CH₂, TBA), 1.563 (s, -CH₂, TBA), 3.131-3.171 (t, -NCH₂, TBA), 2.077 (s, CH₃CN), 2.707 (s, 6H, -NCH₂), 3.613 (s, 6H, -NCH₂CH₂), 7.947-7.968 (d, 6H, ArH), 8.090-8.112 (d, 6H, ArH), 9.035 (s, 3H, -CH₂NH), 11.915 (s, 3H, Ar-NH); ¹³C NMR (100 MHz, DMSO- d_6): δ 13.03 (×4C, -CH₃, TBA), 19.57 (×4C, -CH₂, TBA), 23.54 (×4C, -CH₂, TBA), 58.59 (×4C, -NCH₂, TBA), 40.91 (×3C, -NCH₂), 51.24 (×3C, -NCH₂CH₂), 120.05 (×6C, ArH), 124.42 (×6C, ArH), 139.44 (×3C, ArH), 151.24 (×3C, ArH), 180.99 (×3C, C=S); FT-IR (KBr, u cm⁻¹): 843, 1108, 1331, 1510, 1537, 2965, 3273.

Figure S13. ¹H NMR spectrum of fluoride complex (**2**) in DMSO- d_6 at 298 K.

Figure S14. ¹³C NMR spectrum of fluoride complex (2) in DMSO- d_6 at 298 K.

Figure S15. FT-IR spectrum of fluoride complex (2) recorded in KBr pellet.

Anion binding study by ¹H NMR titration experiments:

Figure S16. Change in chemical shift of -NH resonances of L (10 mM) with increasing conc. of standard $H_2PO_4^-$ solution (50 mM) in DMSO- d_6 at 298 K and the corresponding Job's plot suggesting the formation of 1:2 host/guest complexes in solution.

Figure S18. Change in chemical shift of -NH resonances of L (10 mM) with increasing conc. of standard F⁻ solution (50 mM) in DMSO- d_6 at 298 K and the corresponding Job's plot.

Figure S19. Expanded ¹H NMR spectra of **L** upon gradual addition of TBAF in DMSO- d_6 .

Figure S20. Change in chemical shift of -NH resonances of L (10 mM) with increasing conc. of standard AcO⁻ solution (50 mM) in DMSO- d_6 at 298 K and the corresponding Job's plot.

Figure S21. Expanded ¹H NMR spectra of **L** upon titration with AcO⁻ ions in DMSO- d_6 .

Figure S22. Change in chemical shift of -NH resonances of **L** (10 mM) with increasing concentration of standard HSO_4^- solution (50 mM) in DMSO- d_6 at 298 K and the corresponding Job's plot.

Figure S23. Expanded ¹H NMR spectra of **L** upon titration with HSO_4^- ions in DMSO- d_6 .

Figure S24. Change in chemical shift of -NH resonances of **L** (10 mM) with increasing concentration of standard Cl⁻ solution (50 mM) in DMSO- d_6 at 298 K and the corresponding Job's plot.

Figure S25. Expanded ¹H NMR spectra of L upon gradual addition of Cl⁻ ions in DMSO- d_6 .

Figure S26. ¹H NMR spectrum of isolated salt of L with orthophosphoric acid (H_3PO_4).

Figure S27. ¹H NMR spectrum of **L** in presence of tetraethyl ammonium nitrate.

Figure S28. ¹H NMR spectrum of **L** in presence of tetrabutylammonium perchlorate.

Figure S29. (a) ¹H NMR spectrum of **L** in presence of 1 equivalent of tetrabutylammonium $H_2PO_4^-$ recorded after overnight equilibration in DMSO- d_6 ; (b) Partial ¹H NMR spectrum (aromatic region) shows that, PO_4^{3-} complex (1) does not form at equivalent stoichiometry of $H_2PO_4^-$.

dihydrogenphosphate recorded after overnight equilibration in DMSO- d_6 ; (b) Partial ¹H NMR spectrum (aromatic region) shows insitu generation of PO₄³⁻ complex (**1**) in greater percentage than the complex formed between added H₂PO₄⁻ and **L**.

References:

1. I. Ravikumar, P. S. Lakshminarayanan, M. Arunachalam, E. Suresh and P. Ghosh, Dalton Trans., 2009, 4160–4168.