Electronic Supplementary Information for:

Lanthanide directed self-assembly synthesis and photophysical evaluation of chiral Eu(III) luminescent "half-helicates"

Christophe Lincheneau,^a Carole Destribats,^a Dawn E. Barry,^a Jonathan A. Kitchen,^a Robert D. Peacock^b and Thorfinnur Gunnlaugsson^a*

Synthesis

Ligands **3** or **4** (35 mg, 0.10 mmol) in 5 mL MeCN had solid $Eu(CF_3SO_3)_3$ (20 mg, 0.03 mmol) added and the resulting solutions were heated at 95°C under microwave irradiation for 10 minutes. The resulting clear yellow solutions were subjected to vapour diffusion of diethyl ether yielding off-white solids.

3₃.Eu₁: obtained as an off-white solid, 24 mg (72%); HR-MALDI-MS: 1133.2395 ($[Eu(3)_3 \cdot Na]^+$ requires 1133.2358). δ_H (400 MHz, CD₃CN), 10.64, 10.08, 8.35, 7.59, 7.46, 6.86, 5.97, 5.29, 4.53, 4.38, 4.11, 1.31. IR(neat): 3290, 3095, 2989, 1619 (C=O), 1590, 1560, 1439, 1380, 1276, 1240, 1225, 1165, 1029, 934, 847, 800, 755, 730, 662 cm⁻¹.

4₃.Eu₁: Obtained as an off-white solid, 27 mg (82%). HR-MALDI-MS: 1133.2393 ([Eu(**4**)₃·Na]⁺ requires 1133.2358). $\delta_{\rm H}$ (400 MHz, CD₃CN) 10.66, 10.11, 8.36, 7.59, 7.47, 6.86, 6.22, 5.92, 5.28, 4.67, 4.36, 4.11, 1.32. IR(neat): 3299, 3093, 1621 (C=O), 1592, 1561, 1440, 1398, 1277, 1241, 1225, 1164, 1029, 935, 847, 800, 757, 731, 662 cm⁻¹.

Figure S1: Obeserved mass spectra for 3₃.Eu (top), 4₃.Eu (middle) and calculated mass spectrum for L₃.Eu (bottom).

Figure S2: Absorption spectra of 3_3 .Eu and 4_3 .Eu in D_2O (A & B), H_2O (C & D) and CH_3CN (E & F).

Figure S3: Excitation spectra (Emission at 615 nm) of 3₃.Eu and 4₃.Eu in D₂O (A & B), H₂O (C & D) and CH₃CN (E & F).

Figure S4: Fluorescence emission spectra of 3₃.Eu and 4₃.Eu in D₂O (A & B), H₂O (C & D) and CH₃CN (E & F).

Figure S5: Phosphorescence emission spectra (excitation at 281 nm) of 3_3 .Eu and 4_3 .Eu in D₂O (A & B), H₂O (C & D) and CH₃CN (E & F).

Lifetime graphs

Figure S6: Lifetimes of 3₃.Eu in D₂O, H₂O and CH₃CN and their corresponding fits.

Figure S7: Lifetimes of 4₃.Eu in D₂O, H₂O and CH₃CN and their corresponding fits.

Table 1: Summary of lifetimes and	hydration states for 3₃.Eu and 4₃.E	u (made as solids (^a) and <i>in situ</i> (^t	^b))
		, , , , , ,	

	τ _{MeCN}	τ _{D20}	τ _{H2O} % population		q
3₃.Euª	2.162	3.907	1.683	0.308	0.1
			70%	30%	
4 ₃ .Eu ^a	1.772	3.777	1.672	0.309	0.1
			71%	29%	
3₃.Eu ^b	0.917	2.760	1.683	0.304	0
			67%	33%	
4 ₃ .Eu ^b	0.892	3.395	1.665	0.306	0.11
			64%	36%	

Figure S8: CD spectra of complexes 3₃.Eu (red) and 4₃.Eu (blue) in CH₃CN.

Figure S9: CD spectra of ligands 3 and 4 in CH₃CN.

Figure S10: MM2 calculations showing the most stable species of L_3 . Eu with three different views: A = view of carboxylate plane, B = view of naphthyl plane and C = view of lateral plane. Arrows denote π - π stacking.

Figure S11: Speciation-distribution diagrams obtained from the titration of 3 (left) and 4 (right) with Eu(CF₃SO₃)₃.

Figure S12: Experimental binding isotherms for the changes in the absorbance spectra upon titrating **3** and **4** with $Eu(SO_3CF_3)_3$ in CH₃CN at room temperature and their corresponding fit by means of SPECFIT.