Supporting information for

Aggregation induced colour change for phosphorescent iridium(III) complex-based anionic surfactants

Matteo Mauro,^a Gabriele De Paoli,^a Matthias Otter,^a Daniela Donghi,^b Giuseppe D'Alfonso^b and Luisa De Cola^{*a}

Figure S1. UV-Vis and normalized emission spectra for complexes 2 (black trace), 3 (red trace) and 4 (blue trace) in *N*,*N*-dimethylformamide at concentration of 1.0×10^{-5} M in degassed condition. All the samples were excited at $\lambda = 400$ nm.

Figure S2. Emission spectra for complexes **2** (black trace), **3** (red trace) and **4** (blue trace) in BuCN glassy matrix at 77K. The samples were excited at $\lambda = 400$ nm.

Figure S3. Absorption and emission spectra for complexes 2 (black lines), 3 (red lines) and 4 (blue lines) at concentration of 1.0×10^{-5} M in air-equilibrated (solid traces) and degassed (dashed traces) MeOH. The samples were excited at $\lambda = 400$ nm.

Figure S4. Excited-state emission decay for samples of complex **5** at different concentrations in airequilibrated bi-distilled H₂O: black trace: 1.8×10^{-3} M; red trace: 4×10^{-4} M. Inset: concentration 1.0×10^{-5} M. The samples were excited at $\lambda = 375$ nm.

Figure S5. Excited-state emission decay for samples of complex 6 at different concentrations in airequilibrated bi-distilled H₂O: black trace: 1.9×10^{-3} M; red trace: 4×10^{-4} M. Inset: concentration 1.0 x10⁻⁵ M. The samples were excited at $\lambda = 375$ nm.

Figure S6. Normalized emission spectra of complex **6** at concentration 1.9×10^{-3} M (black trace) and 1.0×10^{-5} M (red trace) in air-equilibrated H₂O, showing the blue shift upon aggregation at higher concentration.

Figure S7. Comparison between emission of aggregates in solutions and solid state samples for complexes **5–6**. Black curves: complex **5** at concentration 1.8×10^{-3} M in air-equilibrated H₂O (solid line) and solid state sample (empty circles); red curves: complex **6** at concentration 1.9×10^{-3} M (solid line) and solid state sample (empty circles). The samples were excited at $\lambda = 400$ nm.

Figure S8. Size distribution at concentration of *ca*. 2×10^{-3} M for aggregated complex **5** (black trace) and **6** (gray trace) in bi-distilled H₂O, as obtained by DLS analysis.

Figure S9. Effect on the particle size distributions for complex **5** at concentration of 1.8×10^{-3} M in air-equilibrated bi-distilled H₂O upon titration with SDS, as obtained by DLS analysis. Titration with 0.1 M SDS solution, upon adding 0 eq. of SDS (black trace); 1/24 eq. of SDS (red trace); 1/12 eq. of SDS (blue trace); 1/6 eq. of SDS (green trace).

Figure S10. Effect on the particle size distributions for of complexes **6** at concentration of 4×10^{-4} M in air-equilibrated bi-distilled H₂O upon titration with SDS, as obtained by DLS analysis. Titration with 0.1 M SDS solution, upon adding 0 eq. of SDS (black trace); 1/24 eq. of SDS (red trace); 1/12 eq. of SDS (blue trace); 1/6 eq. of SDS (magenta trace).

Figure S11. Comparison between emission spectra of complex **5** in air-equilibrated H₂O: aggregated species at concentration 1.8×10^{-3} M (black trace); upon addition of 1/6 eq. of SDS (red trace); sample at concentration 1.0×10^{-5} M (blue curve). The samples were excited at $\lambda = 400$ nm.

Figure S12. Time resolved emission decays of complex **5** in air-equilibrated H₂O: aggregated species at concentration 1.8×10^{-3} M (black trace). Inset: decay upon addition of 1/6 eq. of SDS (red trace); sample at concentration 1.0×10^{-5} M (blue curve). The samples were excited at $\lambda = 400$ nm.

Figure S13. Variable temperature ¹H NMR spectra (from the bottom) of a 3.0×10^{-3} M solution of compound **5** in D₂O. The upper trace has been recorded after cooling the sample back to 300 K.

		air-equilibrated			degassed		
Complex	abs (ϵ) [nm, (10 ³ M ⁻¹ cm ⁻¹)]	λ_{em} [nm]	τ [ns]	PLQY (%)	λ _{em} [nm]	τ [ns]	PLQY (%)
2	233 (35.0), 259 (40.0), 396 (4.6), 437 (3.3), 480 (0.6)	615	6	0.2	502, 527, 615sh	2 (58%) ^b 10 (35%) ^b 339 (5%) ^b 692 (2%) ^b	0.3
						6 (97%) ^c 33 (3%) ^c	
3	233 (32.4), 259 (36.5), 396 (4.2), 437 (3.1), 480 (0.6)	615	6	0.2	502sh, 615	6 (89%) ^b 20 (5%) ^b 317 (3%) ^b 710 (2%) ^b	0.3
						6 (99%) ^c 33 (1%) ^c	
4	233 (35.0), 259 (37.0), 396 (4.2), 437 (3.0), 480 (0.6)	615	6	0.2	503, 525, 613 ^a	5 (79%) ^b 26 (9%) ^b 453 (10%) ^b 1080 (2%) ^b	0.4
						7 (98%) ^c 43 (2%) ^c	
5	233 (28.3), 259 (30.9), 396 (3.7), 437 (2.7), 480 (0.6)	615	7	0.3	502, 525sh, 613	$2(62\%)^{b} 9(32\%)^{b} 502(5\%)^{b} 2148(1\%)^{b}$	0.4
						7 (97%) ^c 39 (3%) ^c	
6	232 (31.0), 259 (30.7), 396 (3.5), 437 (2.6), 480 (0.5)	615	6	0.3	503, 525sh, 613	6 (96%) ^b 38 (2%) ^b 661 (2%) ^b	0.3
						7 (99%) ^c 38 (1%) ^c	

Table S1. Most meaningful photophysical data for complexes **2–6** at concentration of 1.0×10^{-5} M in both air-equilibrated and degassed MeOH solutions. ^{*a*} very broad; ^{*b*} measured at 502 nm; ^{*c*} measured at 625 nm.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2011