Supplementary Data

Kinetic Study of Nickel-Thiolate Oxygenation by Hydrogen Peroxide. Implications for Nickel-Containing Superoxide Dismutase.

Donald R. Herdt^a and Craig A. Grapperhaus^{*a}

^aDepartment of Chemistry, University of Louisville, Louisville, KY 40292, United States

Table of Contents

Experimental Procedures	S2
Table S1. Observed rate constants for the oxidation of 1 by H_2O_2 at pH = 6.0 and 303 K	S3
Table S2. Observed rate constants for the oxidation of 1 by H_2O_2 at $pH = 7.0$ and 303 K	S4
Table S3. Observed rate constants for the oxidation of 1 by H_2O_2 at $pH = 8.0$ and 303 K	S5
Table S4. Observed rate constants for the oxidation of 1 by H_2O_2 at $pH = 6.0$ and 313 K	S6
Table S5. Observed rate constants for the oxidation of 1 by H_2O_2 at $pH = 7.0$ and 313 K	S7
Table S6. Observed rate constants for the oxidation of 1 by H_2O_2 at $pH = 8.0$ and 313 K	S8
Table S7. Observed rate constants for the oxidation of 1 by H_2O_2 at $pH = 6.0$ and 323 K	S9
Table S8. Observed rate constants for the oxidation of 1 by H_2O_2 at $pH = 7.0$ and 323 K	S10
Table S9. Observed rate constants for the oxidation of 1 by H_2O_2 at $pH = 8.0$ and 323 K	S11
Figure S1. Plot of average $k_{obs} \ge 10^2 (s^{-1})$ versus [H ₂ O ₂] (mM) at 313 K	S12
Figure S2. Plot of average $k_{obs} \ge 10^2 (s^{-1})$ versus [H ₂ O ₂] (mM) at 323 K	S13
Figure S3. Eyring plot for the oxidation of 1 by H ₂ O ₂	S14

Experimental Procedures

Materials and Methods

All chemicals obtained from commercial sources were reagent-grade and used as received. The complex $[N-\{2-[(2-mercapto-2-methylpropyl)amino]ethyl\}-1-methylimidazole-2-carboxamido]nickel(II) (1) was prepared by previously reported methods.¹ UV-visible data were collected using an Agilent 8453 spectrometer equipped with a variable temperature cell holder supplied by a Polyscience temperature regulator, model 1190A.$

(1) Mullins, C. S.; Grapperhaus, C. A.; Frye, B. C.; Wood, L. H.; Hay, A. J.; Buchanan, R. M.; Mashuta, M. S. *Inorg. Chem.* **2009**, *48*, 9974.

Oxidation of 1

Stock solutions were prepared by dissolution of **1** (41.4 mg, 0.100 mmol) in 100 mL of .2 M phosphate buffers with pH values of 6.0, 7.0 and 8.0. Hydrogen peroxide solutions (0.0618, 0.124, 0.186, and 0.247 M) were prepared daily by serial dilution of a freshly prepared stock solution made from H_2O_2 ·urea (600 mg, 6.38 mmol) and deionized H_2O (10.00 mL). For each reaction, 1.00 mL of the stock solution of **1** was diluted with 1.00 mL deionized H_2O in a 1.0 cm cuvette, which was placed in the variable temperature cell holder. After the temperature equilibrated, 200 µL of a diluted H_2O_2 solution was injected. The reaction progress was monitored by the decrease in peak intensity at $\lambda_{max} = 387$ nm for 800 seconds in 1 s intervals. At least four trials were conducted for each reaction condition.

Evaluation of k_{obs}

Kinetic data for each trial was fit using SigmaPlot 8.0 according to equation 1 where At is the absorption at time *t*, A_{baseline} is a constant value to correct for fluctuation in the baseline between samples, A_0 is the initial absorption value, *k* is k_{obs} , and t is time (in seconds).

$$A_{t} = A_{baseline} + A_{0}e^{-kt}$$
⁽¹⁾

0.0232

buffered aqueous solution at 303 K. ^a			
$[H_2O_2] (M)$	k_{obs} (s ⁻¹)	std. dev.	
0.00580	0.003233	0.000007	
0.00580	0.002877	0.000007	
0.00580	0.002938	0.000010	
0.0116	0.005651	0.000010	
0.0116	0.005588	0.000011	
0.0116	0.005411	0.000012	
0.0116	0.004399	0.000010	
0.0116	0.004991	0.000009	
0.0174	0.007967	0.000014	
0.0174	0.008169	0.000022	
0.0174	0.008538	0.000019	
0.0174	0.008704	0.000022	
0.0232	0.011110	0.000027	
0.0232	0.010200	0.000023	
0.0232	0.009386	0.000028	
0.0232	0.011760	0.000036	

Table S1. Observed rate constants for the direct oxidation of **1** by H_2O_2 in pH = 6.0 buffered aqueous solution at 303 K.^a

^a Conditions: [1] = 0.455 mM in 0.091 M phosphate buffer. Reactions were monitored at 387 nm. Reported *k* values determined by best fit of experimental data as described in the experimental section.

0.013320

0.000052

Table S2. Observed rate constants for the direct oxidation of **1** by H_2O_2 in pH = 7.0 buffered aqueous solution at 303 K.^a

[H ₂ O ₂] (M)	k_{obs} (s ⁻¹)	std. dev.
0.00580	0.002663	0.000008
0.00580	0.002795	0.000008
0.00580	0.002732	0.000007
0.00580	0.003063	0.000008
0.0116	0.004858	0.000014
0.0116	0.005041	0.000011
0.0116	0.004861	0.000011
0.0116	0.005071	0.000017
0.0174	0.007661	0.000019
0.0174	0.007686	0.000021
0.0174	0.007535	0.000021
0.0174	0.008330	0.000033
0.0232	0.010580	0.000038
0.0232	0.011490	0.000075
0.0232	0.009940	0.000045
0.0232	0.010490	0.000049

Table S3. Observed rate constants for the direct oxidation of 1 by H_2O_2 in pH = 8.0	
buffered aqueous solution at 303 K. ^a	

[H ₂ O ₂] (M)	k_{obs} (s ⁻¹)	std. dev.
0.00580	0.003123	0.000012
0.00580	0.003694	0.000012
0.00580	0.003668	0.000013
0.0058	0.003061	0.000011
0.0116	0.007031	0.000026
0.0116	0.007045	0.000025
0.0116	0.006424	0.000020
0.0116	0.006840	0.000020
0.0174	0.010270	0.000051
0.0174	0.010160	0.000044
0.0174	0.007649	0.000028
0.0174	0.010400	0.000060
0.0232	0.012390	0.000060
0.0232	0.012740	0.000087
0.0232	0.011670	0.000041
0.0232	0.009821	0.000026

Table S4. Observed rate constants for the direct oxidation of **1** by H_2O_2 in pH = 6.0 buffered aqueous solution at 313 K.^a

[H ₂ O ₂] (M)	k_{obs} (s ⁻¹)	std. dev.
0.005624	0.005669	0.000012
0.005624	0.005880	0.000016
0.005624	0.005314	0.000010
0.005624	0.004884	0.000014
0.011249	0.010930	0.000028
0.011249	0.010460	0.000021
0.011249	0.010180	0.000035
0.016873	0.016930	0.000042
0.016873	0.014680	0.000026
0.016873	0.015270	0.000033
0.016873	0.017910	0.000073
0.016873	0.015800	0.000044
0.016873	0.017070	0.000070
0.022498	0.020710	0.000066
0.022498	0.023180	0.000137
0.022498	0.024260	0.000136
0.022498	0.022170	0.000134
0.022498	0.023080	0.000101

[H ₂ O ₂] (M)	k_{obs} (s ⁻¹)	std. dev.
0.005624	0.005892	0.000014
0.005624	0.006668	0.000021
0.005624	0.005270	0.000018
0.005624	0.006450	0.000012
0.005624	0.005550	0.000013
0.011249	0.010400	0.000096
0.011249	0.010690	0.000106
0.011249	0.011230	0.000113
0.011249	0.012090	0.000103
0.016873	0.017690	0.000241
0.016873	0.019510	0.000211
0.016873	0.017590	0.000234
0.016873	0.017350	0.000126
0.016873	0.017040	0.000174
0.022498	0.020960	0.000230
0.022498	0.030720	0.000310
0.022498	0.025730	0.000332
0.022498	0.023150	0.000211
0.022498	0.026190	0.000380
0.022498	0.026290	0.000220

Table S5. Observed rate constants for the direct oxidation of 1 by H_2O_2 in pH = 7.0

Table S6. Observed rate constants for the direct oxidation of **1** by H_2O_2 in pH = 8.0 buffered aqueous solution at 313 K.^a

[H ₂ O ₂] (M)	k_{obs} (s ⁻¹)	std. dev.
0.005624	0.004835	0.000024
0.005624	0.004872	0.000022
0.005624	0.004845	0.000024
0.005624	0.004633	0.000029
0.011249	0.009674	0.000060
0.011249	0.011580	0.000134
0.011249	0.010560	0.000076
0.011249	0.010060	0.000076
0.016873	0.015260	0.000132
0.016873	0.016090	0.000138
0.016873	0.014260	0.000115
0.016873	0.015760	0.000132
0.022498	0.017840	0.000191
0.022498	0.019000	0.000141
0.022498	0.020050	0.000235
0.022498	0.021110	0.000207
0.022498	0.021430	0.000207

Table S7. Observed rate constants for the direct oxidation of **1** by H_2O_2 in pH = 6.0 buffered aqueous solution at 323 K.^a

[H ₂ O ₂] (M)	k_{obs} (s ⁻¹)	std. dev.
0.005624	0.008543	0.000032
0.005624	0.009209	0.000049
0.005624	0.009580	0.000056
0.005624	0.008556	0.000059
0.011249	0.022560	0.000163
0.011249	0.022020	0.000169
0.011249	0.021730	0.000184
0.011249	0.025290	0.000318
0.016873	0.032150	0.000333
0.016873	0.034420	0.000367
0.016873	0.031920	0.000310
0.016873	0.034460	0.000320
0.022498	0.049040	0.000978
0.022498	0.043210	0.000384
0.022498	0.039320	0.000371
0.022498	0.049210	0.000515

Table S8. Observed rate constants for the direct oxidation of **1** by H_2O_2 in pH = 8.0 buffered aqueous solution at 303 K.^a

[H ₂ O ₂] (M)	k_{obs} (s ⁻¹)	std. dev.
0.005624	0.018800	0.000118
0.005624	0.013370	0.000025
0.005624	0.012970	0.000036
0.005624	0.014390	0.000034
0.005624	0.014290	0.000062
0.011249	0.030260	0.000359
0.011249	0.029800	0.000093
0.011249	0.025250	0.000043
0.011249	0.029080	0.000299
0.016873	0.038890	0.000201
0.016873	0.039880	0.000171
0.016873	0.040340	0.000250
0.016873	0.039790	0.000212
0.022498	0.054570	0.000302
0.022498	0.052850	0.000257
0.022498	0.038740	0.000201
0.022498	0.050680	0.000345

Table S9. Observed rate constants for the direct oxidation of **1** by H_2O_2 in pH = 8.0 buffered aqueous solution at 303 K.^a

[H ₂ O ₂] (M)	k_{obs} (s ⁻¹)	std. dev.
0.005624	0.008862	0.000054
0.005624	0.010410	0.000097
0.005624	0.009416	0.000092
0.005624	0.011230	0.000046
0.005624	0.009150	0.000068
0.005624	0.007785	0.000048
0.005624	0.009109	0.000056
0.011249	0.023480	0.000150
0.011249	0.017950	0.000047
0.011249	0.025360	0.000198
0.011249	0.024790	0.000197
0.016873	0.043530	0.000401
0.016873	0.036270	0.000207
0.016873	0.040330	0.000231
0.016873	0.033840	0.000152
0.022498	0.040230	0.000820
0.022498	0.052700	0.000588
0.022498	0.051650	0.000496
0.022498	0.049670	0.000472

Figure S1. Plot of average $k_{obs} \ge 10^2 (s^{-1})$ versus [H₂O₂] (mM) for **1** at pH = 6.0, 7.0, and 8.0 at 313 K. Data from Table 1 of main text. The solid line represents the pH-independent fit of the data as determined by linear regression of the experimental results over all pH values.

Figure S2. Plot of average $k_{obs} \ge 10^2 (s^{-1})$ versus $[H_2O_2]$ (mM) for **1** at pH = 6.0, 7.0, and 8.0 at 323 K. Data from Table 1 of main text. The solid line represents the pH-independent fit of the data as determined by linear regression of the experimental results over all pH values.

Figure S3. Eyring plot for the oxidation of $\mathbf{1}$ by H_2O_2 .