Electronic Supplementary Information

Control over the Oxidative Reactivity of Metalloporphyrins. Efficient Electrosynthesis of *meso,meso*-Linked Zinc Porphyrin Dimer

 Abdou K. D. Dime, Charles H. Devillers,* Hélène Cattey, Benoît Habermeyer and Dominique Lucas* Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 5260, Université de Bourgogne, BP 47870, 21078 DIJON Cedex, France.
E-mail: <u>charles.devillers@u-bourgogne.fr</u>; <u>dominique.lucas@u-bourgogne.fr</u>

Contents

Characterisation of 1-Zn and 2-Zn:	
-NMR Characterisation of 1-Zn in CD ₂ Cl ₂ :	
¹ H NMR (Fig. 1 and Fig. 2)	p.3-4
¹³ C NMR (Fig. 3 and Fig. 4)	p.5-6
COSY NMR (Fig. 5 and Fig. 6)	p.7-8
NOESY NMR (Fig. 7 and Fig. 8)	p.9-10
HSQC NMR (Fig. 9 and Fig. 10)	p.11-12
-NMR Characterisation of 2-Zn in THF-d8:	
¹ H NMR (Fig. 11 and Fig. 12)	p.13-14
¹³ C NMR (Fig. 13 and Fig. 14)	p.15-16
COSY NMR (Fig. 15 and Fig. 16)	p.17-18
NOESY NMR (Fig. 17 and Fig. 18)	p.19-20
HSQC NMR (Fig. 19 and Fig. 20)	p.21-22
-MALDI-TOF mass spectrum of 2-Zn (Fig. 21) and its simulated	
isotopic pattern (Fig. 22)	p.23
-RDE voltammograms of 1-Zn (Fig. 23) and 2-Zn (Fig. 24) with	
and without 2,6-lutidine	p.24
-Differential pulse voltammogram of 2-Zn with and without <i>2,6</i> -lutidine (Fig. 25)	p.25
-UV-visible absorption spectra of 1-Zn and 2-Zn in CH ₂ Cl ₂ (Fig. 26)	p.25
-Ortep view of 1-Zn crystallographic structure (Fig. 27)	p.26
-Ortep view of 2-Zn crystallographic structure (Fig. 28)	p.26

-Crystal data and structure refinement for 1-Zn and 2-Zn complexes (Table 1)	p.27
-Selected bond lengths (Å) and angles (°) for 1-Zn (Table 2) and 2-Zn (Table 3)	p.28
- ¹ H NMR spectrum of a crude solution resulting from an electrosynthesis perform	ned using
experimental conditions of entry 3, Table 2 of the manuscript (Fig. 29)	p.29

Chemical synthesis of 1-H ₂ and 1-Zn-Cl	p.30
--	------

Characterisation of 1-H ₂ :	
--	--

- MALDI-TOF mass spectrum (Fig. 30)	p.30
- ¹ H NMR in CD_2Cl_2 (Fig. 31 and Fig. 32)	p.31-32

Characterisation of **1-Zn-Cl**:

- MALDI-TOF mass spectrum (Fig. 33) and and its simulated isotopic		
pattern (Fig. 34)	p.33	
- ¹ H NMR spectrum in (CD ₃) ₂ CO (Fig. 35 and Fig. 36)	p.34-35	

Fig. 1 ¹H NMR spectrum of 1-Zn in CD₂Cl₂, 500 MHz, 300 K.

Fig. 2 Partial ¹H NMR spectrum of **1-Zn** in CD₂Cl₂, 500 MHz, 300 K. δ (ppm) 2.73 (s, CH₃, 6H), 7.61 (d, ³*J* = 7.7 Hz, *m*-tol, 2H), 7.74-7.80 (m, *p*,*m*-Ph, 3H), 8.11 (d, ³*J* = 7.9 Hz, *o*-tol, 2H), 8.21-8.23 (m, *o*-Ph, 2H), 8.96 (d, ³*J* = 4.7 Hz, *β*-Pyrr, 2H), 9.01 (d, ³*J* = 4.7 Hz, *β*-Pyrr, 2H), 9.09 (d, ³*J* = 4.5 Hz, *β*-Pyrr, 2H), 9.39 (d, ³*J* = 4.5 Hz, *β*-Pyrr, 2H), 10.21 (s, *β*-Pyrr, 1H).

Fig. 6 Partial ¹H-¹H COSY NMR spectrum of 1-Zn in CD₂Cl₂, 500 MHz, 300 K.

Fig. 7 ¹H-¹H NOESY NMR spectrum of 1-Zn in CD₂Cl₂, 500 MHz, 300 K

Fig. 8 Partial ¹H-¹H NOESY NMR spectrum of **1-Zn** in CD₂Cl₂, 500 MHz, 300 K.

Fig. 9 1 H- 13 C HSQC NMR spectrum of 1-Zn in CD₂Cl₂, 500 MHz, 300 K.

Fig. 10 Partial ¹H-¹³C HSQC NMR spectrum of **1-Zn** in CD₂Cl₂, 500 MHz, 300 K.

Fig. 15 1 H- 1 H COSY NMR spectrum of 2-Zn in THF-d8, 500 MHz, 300 K.

Fig. 16 Partial ¹H-¹H COSY NMR spectrum of **2-Zn** in THF-d8, 500 MHz, 300 K.

Fig. 18 Partial ¹H-¹H NOESY NMR spectrum of **2-Zn** in THF-d8, 500 MHz, 300 K.

Fig. 21 MALDI-TOF mass spectrum of 2-Zn.

Fig. 22 Partial MALDI-TOF mass spectrum of **2-Zn** centered on its isotopic pattern (red/solid curve) and simulated isotopic pattern for a formula corresponding to **2-Zn** (black/dotted curve).

Fig. 23 RDE voltammograms of **1-Zn** without (black/solid line) and with (red/dashed line) 2,6-lutidine in DCM/ACN (4/1 v/v) containing 0.1 M TBAPF₆ (WE: Pt, $\emptyset = 2$ mm, 10 mV s⁻¹, $\omega = 500$ rpm, [**1-Zn**] = 5.0×10⁻⁴ M).

Fig. 24 RDE voltammograms of **2-Zn** without (black/solid line) and with (red/dashed line) 2,6-lutidine in CH₂Cl₂/CH₃CN (4/1 v/v) containing 0.1 M TBAPF₆ (WE: Pt, $\emptyset = 2 \text{ mm}$, 10 mV s⁻¹, $\omega = 500 \text{ rpm}$, [**2-Zn**] = 2.5×10⁻⁴ M).

Fig. 25 DPV voltammograms of **2-Zn** without (black/solid line) and with (red/dashed line) 2,6-lutidine in CH₂Cl₂/CH₃CN (4/1 v/v) containing 0.1 M TBAPF₆ (WE: Pt, $\emptyset = 2 \text{ mm}$, 10 mV s⁻¹, [**2-Zn**] = 2.5×10⁻⁴ M).

Fig. 26 UV-visible absorption spectra of 1-Zn and 2-Zn in CH₂Cl₂.

Fig. 27: Ortep view of 1-Zn crystallographic structure (plot of metallo-ligand with 30% probability)

Fig 28: Ortep view of 2-Zn crystallographic structure (plot of metallo-ligand with 30% probability)

Compounds	cd8=1-Zn	cd4=2-Zn
Empirical formula	C40H28ZnN4	$C_{86}H_{66}N_8O_2Zn_2, C_3H_6O$
Formula weight	630.03	1432 29
Temperature (K)	115(2)	115(2)
Crystal system	monoclinic	triclinic
Space group	$P2_1/c$	P -1
a(Å)	22.8237(7)	10.9880(2)
$b(\dot{A})$	9.3135(3)	16.0826(4)
$c(\dot{A})$	15.0499(5)	22.0181(5)
$\alpha(^{\circ})$		73.0542(8)
$\beta(\circ)$	107.2963(14)	81.9980(12)
γ (°)	~ /	74.2166(12)
Volume ($Å^3$)	3054.47(17)	3577.32(14)
Ζ	4	2
$\rho_{\text{calc.}}$ (g/cm ³)	1.370	1.330
μ (mm ⁻¹)	0.840	0.729
F(000)	1304	1492
Crystal size (mm^3)	0.18 x 0.15 x 0.15	0.23 x 0.13 x 0.1
$\sin(\theta)/\lambda$ max (Å ⁻¹)	0.65	0.65
Index ranges	<i>h</i> : -29; 29	<i>h</i> : -14; 14
-	<i>k</i> : -11; 12	<i>k</i> : -20; 20
	<i>l</i> : -19; 19	<i>l</i> : -28; 28
Reflections collected	12577	28953
R _{int}	0.0354	0.0237
Reflections with $I \ge 2\sigma(I)$	5272	13792
Data / restraints / parameters	6935 / 0 / 408	16167 / 18 / 943
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R1^{a} = 0.0612$	$R1^{a} = 0.0451$
	$wR2^{b} = 0.1067$	$wR2^{b} = 0.1038$
<i>R</i> indices (all data)	$R1^{a} = 0.0866$	$R1^{a} = 0.0572$
- 2	$wR2^{b} = 0.1169$	$wR2^{b} = 0.1120$
Goodness-of-fit ^c on F^2	1.155	1.080
Largest difference,		
peak and hole (e Å ⁻³) CCDC deposition no.	0.355 and -0.476	0.625 and -0.557

Table 1. Crystal data and structure refinement for 1-Zn and 2-Zn complexes.

^a $R1=\Sigma(||F_0|-|F_c||)/\Sigma|F_0|$. ^b $wR2=[\Sigma w(F_0^2-F_c^2)^2/\Sigma[w(F_0^2)^2]^{1/2}$ where $w=1/[\sigma^2(Fo^2+(7.6974P)]$ for **1-Zn**, $w=1/[\sigma^2(Fo^2+(0.0344P)^2+4.7907P]$ for **2-Zn** where $P=(Max(Fo^2.0)+2*Fc^2)/3$ ^c $S=[\Sigma w(F_0^2-F_c^2)^2/(n-p)]^{1/2}$ (*n* = number of reflections. *p* = number of parameters).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2011

Zn-N1	2.039(3)	C5-C21	1.502(4)	
Zn-N2	2.034(3)	C10-C28	1.504(5)	
Zn-N3	2.039(3)	C15-C34	1.501(4)	
Zn-N4	2.035(3)			

Table 2. Selected bond lengths (Å) and angles (°) for 1-Zn

Table 3. Selected bond lengths (Å) and angles (°) for 2-Zn

Zn1-O1	2.2113(34)	C5-C41	1.496(3)
Zn1-O1b	2.2303(100)	C10-C48	1.499(3)
Zn1-N1	2.0450(18)	C15-C54	1.497(3)
Zn1-N2	2.0610(19)	C26-C61	1.494(3)
Zn1-N3	2.0516(19)	C31-C68	1.503(3)
Zn1-N4	2.0745(18)	C36-C74	1.495(3)
Zn2-O2	2.1823(24)	C20-C21	1.507(3)
Zn2-N5	2.0631(18)		
Zn2-N6	2.048(2)	Zn1-Zn2	8.3037(4)
Zn2-N7	2.0621(18)		
Zn2-N8	2.0544(19)	C1-C20-C21-C	72.76(26)

Fig. 29 ¹H NMR spectrum (300 MHz, CD₃COCD₃, 300 K) of a crude solution resulting from electrosynthesis performed using experimental conditions of entry 3, Table 2 of the manuscript. The product's distribution was calculated using integration of each product as exemplified below.

Total amount of products:

(2.1735/2H) = 1.08675 for **1-Zn** (signal at 9.30 ppm integrating for 2 H) + (0.8286/2H) = 0.4143 for **1-Zn-Cl** (signal at 9.55 ppm integrating for 2 H) + (24.5328/4H) = 6.1332 for **2-Zn** (signal at 8.44 ppm integrating for 4 H) thus the double for monomer units of **2-Zn** = 12.2664. Total amount of products = 1.08675 + 0.4143 + 12.2664 = 13.7674.

Product's distribution:

For 1-Zn: 1.08675/13.7674 = 7.9%; for 1-Zn-Cl: 0.4143/13.7674 = 3.0%; for 2-Zn: 12.2664/13.7674 = 89.1%.

Synthesis of 1-H₂

After dissolution of **1-Zn** (15.0 mg, 23.8 μ mol) in 80 mL of acetone, 20 mL of concentrated hydrochloric acid was added and this mixture was stirred for 1 min at room temperature. The organic layer was washed with 2× 200 ml of distilled water and neutralized with 100 ml of saturated sodium acetate solution. The organic phase was washed again with 3×250 ml of distilled water. After evaporation of the solvent, the crude product was purified by column chromatography on silica gel (CH₂Cl₂), affording the porphyrin **1-H**₂ (12.1 mg, 21.35 μ mol, 89% yield).

 λ_{max} (CH₂Cl₂)/nm (relative absorbance/%) = 413 (100), 509 (4.24), 544 (1.39), 583 (1.21), 639 (0.56).

Synthesis of 1-Zn-Cl

1-Zn (10.0 mg, 15.87 µmol) was dissolved in 5 mL of CH_2Cl_2 containing 2.2 eq. of 2,6-lutidine (4 µL). *N*-chlorosuccinimide (10.0 mg, 4.98 eq.) was then added and the reaction mixture was stirred for 12 min. at room temperature. The solution was washed with 3×250 ml of distilled water. After evaporation of the solvent, the crude product was purified by column chromatography on alumina (CH_2Cl_2/n -heptane (7/3)) affording **1-Zn-Cl** (8.7 mg, 82% yield).

 λ_{max} (CH₂Cl₂)/nm (relative absorbance/ %)= 423 (100), 555 (3.35), 598 (0.84).

Fig. 30 MALDI-TOF mass spectrum of 1-H₂.

Fig. 32 Partial ¹H NMR spectrum of **1-H**₂ in CD₂Cl₂, 300 MHz, 300 K. δ (ppm) -3.04 (s, NH, 2H), 2.73 (s, CH₃, 6H), 7.62 (d, ${}^{3}J$ = 7.7 Hz, *m*-tol, 2H), 7.73-7.84 (m, *p*,*m*-Ph, 3H), 8.13 (d, ${}^{3}J$ = 7.9 Hz, *o*-tol, 2H), 8.20-8.23 (m, *o*-Ph, 2H), 8.87 (d, ${}^{3}J$ = 4.8 Hz, β-Pyrr, 2H), 8.93 (d, ${}^{3}J$ = 4.8 Hz, β-Pyrr, 2H), 9.05 (d, ${}^{3}J$ = 4.6 Hz, β-Pyrr, 2H), 9.38 (d, ${}^{3}J$ = 4.6 Hz, β-Pyrr, 2H), 10.25 (s, β-Pyrr, 1H).

Fig. 33 MALDI-TOF mass spectrum of 1-Zn-Cl.

Fig. 34 Partial MALDI-TOF mass spectrum of **1-Zn-Cl** centered on its isotopic pattern (red/solid curve) and simulated isotopic pattern for a formula corresponding to **1-Zn-Cl** (black/dotted curve).

Fig. 36 Partial ¹H NMR spectrum of **1-Zn-Cl** (CD₃COCD₃, 300 MHz, 300 K). δ (ppm) 2.70 (s, CH₃, 6H), 7.62 (d, ³*J* = 7.7 Hz, *m*-tol, 2H), 7.74-7.83 (m, *p*,*m*-Ph, 3H), 8.07 (d, ³*J* = 7.9 Hz, *o*-tol, 2H), 8.15-8.19 (m, *o*-Ph, 2H), 8.79 (d, ³*J* = 4.7 Hz, β -Pyrr, 2H), 8.84 (d, ³*J* = 4.7 Hz, β -Pyrr, 2H), 8.94 (d, ³*J* = 4.7 Hz, β -Pyrr, 2H), 9.68 (d, ³*J* = 4.7 Hz, β -Pyrr, 2H).