Supporting Information for

Comparisons of Zinc with Cadmium in N_2S_2 Coordination

and as S-Bonded Adducts to Tungsten Carbonyls

Jason A. Denny,^a William S. Foley,^a Elky Almaraz,^a Joseph H. Reibenspies,^a Nattamai Bhuvanesh^a and Marcetta Y. Darensbourg^{*a}

Table of ContentsPage Number
Figure S1. Thermal ellipsoid plot at 50% probability for [Cd-1']x
Figure S2. Thermal ellipsoid plot at 50% probability for monomeric unit of [Cd-1'-W(CO) ₅] ₂
Figure S3. Thermal ellipsoid plot at 50% probability for dimeric [Cd-1'-W(CO) ₅] ₂
Table S1. Crystal data and structure refinement for [Cd-1']x
Table S2. Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10 ³) for [Cd-1'] _x . U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor S6
Table S3. Bond lengths [Å] and angles [°] for [Cd-1'] _x
Table S4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for $[Cd-1']_x$. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2}U^{11} + + 2h k a^{*} b^{*} U^{12}]$ S11
Table S5. Hydrogen coordinates (x 10 ⁴) and isotropic displacement parameters (Å ² x 10 ³) for [Cd-1'] _x
Table S6. Crystal data and structure refinement for [Cd-1'-W(CO) ₅] ₂
Table S7. Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10 ³) for [Cd-1'-W(CO) ₅] ₂ . U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor
Table S8. Bond lengths [Å] and angles [°] for [Cd-1'-W(CO) ₅] ₂

Table S9. Anisotropic displacement parameters ($Å^2x \ 10^3$) for [Cd-1'-W(CO) ₅] ₂ . The
anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h ² a ^{*2} U ¹¹ + + 2 h k a [*] b [*]
U ¹²]
Table S10 Hydrogen accordinates ($x = 104$) and isotropic displacement perspectates ($^{1}A^{2}x = 103$)
for $[Cd-1]^{-W}(CO)_{-1}$

Figure S1. Thermal ellipsoid plot at 50% probability for [Cd-1']x.

Figure S2. Thermal ellipsoid plot at 50% probability for monomeric unit of [Cd-1'-W(CO)₅]₂.

Figure S3. Thermal ellipsoid plot at 50% probability for dimeric [Cd-1'-W(CO)₅]₂.

Tuble D1 . Cijstal data alla stractare re				
Identification code	[Cd-1'] _x			
Empirical formula	C9 H18 Cd N2 S2	C9 H18 Cd N2 S2		
Formula weight	330.77			
Temperature	110(2) K			
Wavelength	1.54184 Å			
Crystal system	Monoclinic			
Space group	C2/c			
Unit cell dimensions	a = 14.690(5) Å	$\alpha = 90^{\circ}$.		
	b = 11.059(3) Å	$\beta = 110.033(15)^{\circ}.$		
	c = 7.516(2) Å	$\gamma = 90^{\circ}$.		
Volume	1147.1(6) Å ³			
Z	4			
Density (calculated)	1.915 Mg/m ³			
Absorption coefficient	18.344 mm ⁻¹			
F(000)	664			
Crystal size	0.20 x 0.01 x 0.01 m	m ³		
Theta range for data collection	7.20 to 59.83°.			
Index ranges	-16<=h<=15, -12<=k	<=12, -7<=l<=8		
Reflections collected	3023			
Independent reflections	656 [R(int) = 0.0498]		
Completeness to theta = 59.83°	76.9 %			
Absorption correction	Semi-empirical from	equivalents		
Max. and min. transmission	0.8378 and 0.1205			
Refinement method	Full-matrix least-squ	ares on F ²		
Data / restraints / parameters	656 / 16 / 87			
Goodness-of-fit on F ²	1.012			
Final R indices [I>2sigma(I)]	R1 = 0.0253, wR2 = 0.0491			
R indices (all data)	R1 = 0.0346, $wR2 = 0.0505$			
Largest diff. peak and hole	0.529 and -0.420 e.Å	-3		

Table S1. Crystal data and structure refinement for [Cd-1']_x.

	Х	У	Ζ	U(eq)	
Cd(1)	0	496(1)	2500	19(1)	
S(1)	-1284(1)	-437(1)	3685(2)	23(1)	
N(1)	-653(3)	2400(3)	3382(6)	29(1)	
C(1)	-1957(5)	963(6)	3470(12)	70(3)	
C(2)	-1366(6)	2038(5)	4264(12)	69(3)	
C(3)	306(8)	3099(10)	4388(18)	23(3)	
C(4)	1052(10)	2990(20)	3400(30)	24(5)	
C(5)	-1238(9)	3110(16)	1570(20)	10(4)	
C(6)	-616(7)	3827(10)	695(16)	28(3)	
C(7)	102(10)	3119(9)	55(18)	33(3)	

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for [Cd-1']_x. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Cd(1)-N(1)#1	2.496(4)
Cd(1)-N(1)	2.496(4)
Cd(1)-S(1)	2.5620(12)
Cd(1)-S(1)#1	2.5620(12)
Cd(1)-S(1)#2	2.8417(14)
Cd(1)-S(1)#3	2.8417(14)
S(1)-C(1)	1.815(6)
S(1)-Cd(1)#3	2.8417(14)
N(1)-C(7)#1	1.420(13)
N(1)-C(4)#1	1.425(18)
N(1)-C(2)	1.474(8)
N(1)-C(5)	1.551(11)
N(1)-C(3)	1.557(11)
C(1)-C(2)	1.472(10)
C(1)-H(1A)	0.9900
C(1)-H(1B)	0.9900
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-C(4)	1.522(10)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(4)-N(1)#1	1.425(18)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(5)-C(6)	1.520(10)
C(5)-H(5A)	0.9900
C(5)-H(5B)	0.9900
C(6)-C(7)	1.517(10)
C(6)-H(6A)	0.9900
C(6)-H(6B)	0.9900
C(7)-N(1)#1	1.420(13)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900

Table S3.	Bond lengths [Å] and angles [°] for [Cd-1'] _x .

N(1)#1-Cd(1)-N(1)	64.9(2)
N(1)#1-Cd(1)-S(1)	145.87(11)
N(1)-Cd(1)-S(1)	81.48(11)
N(1)#1-Cd(1)-S(1)#1	81.48(11)
N(1)-Cd(1)-S(1)#1	145.87(11)
S(1)-Cd(1)-S(1)#1	132.50(5)
N(1)#1-Cd(1)-S(1)#2	86.21(10)
N(1)-Cd(1)-S(1)#2	96.02(10)
S(1)-Cd(1)-S(1)#2	91.64(4)
S(1)#1-Cd(1)-S(1)#2	87.30(4)
N(1)#1-Cd(1)-S(1)#3	96.02(10)
N(1)-Cd(1)-S(1)#3	86.21(10)
S(1)-Cd(1)-S(1)#3	87.30(4)
S(1)#1-Cd(1)-S(1)#3	91.64(4)
S(1)#2-Cd(1)-S(1)#3	177.37(5)
C(1)-S(1)-Cd(1)	93.97(19)
C(1)-S(1)-Cd(1)#3	105.2(3)
Cd(1)-S(1)-Cd(1)#3	92.70(4)
C(7)#1-N(1)-C(4)#1	117.2(11)
C(7)#1-N(1)-C(2)	94.2(7)
C(4)#1-N(1)-C(2)	114.9(6)
C(7)#1-N(1)-C(5)	115.4(9)
C(4)#1-N(1)-C(5)	10.5(9)
C(2)-N(1)-C(5)	105.4(6)
C(7)#1-N(1)-C(3)	32.4(5)
C(4)#1-N(1)-C(3)	104.0(9)
C(2)-N(1)-C(3)	125.5(7)
C(5)-N(1)-C(3)	108.2(8)
C(7)#1-N(1)-Cd(1)	122.0(5)
C(4)#1-N(1)-Cd(1)	101.9(9)
C(2)-N(1)-Cd(1)	106.7(3)
C(5)-N(1)-Cd(1)	110.0(8)
C(3)-N(1)-Cd(1)	100.5(5)
C(2)-C(1)-S(1)	115.1(5)
C(2)-C(1)-H(1A)	108.5
S(1)-C(1)-H(1A)	108.5

C(2)-C(1)-H(1B)	108.5
S(1)-C(1)-H(1B)	108.5
H(1A)-C(1)-H(1B)	107.5
C(1)-C(2)-N(1)	116.6(6)
C(1)-C(2)-H(2A)	108.1
N(1)-C(2)-H(2A)	108.1
C(1)-C(2)-H(2B)	108.1
N(1)-C(2)-H(2B)	108.1
H(2A)-C(2)-H(2B)	107.3
C(4)-C(3)-N(1)	114.0(11)
C(4)-C(3)-H(3A)	108.8
N(1)-C(3)-H(3A)	108.8
C(4)-C(3)-H(3B)	108.8
N(1)-C(3)-H(3B)	108.8
H(3A)-C(3)-H(3B)	107.6
N(1)#1-C(4)-C(3)	111.2(12)
N(1)#1-C(4)-H(4A)	109.4
C(3)-C(4)-H(4A)	109.4
N(1)#1-C(4)-H(4B)	109.4
C(3)-C(4)-H(4B)	109.4
H(4A)-C(4)-H(4B)	108.0
C(6)-C(5)-N(1)	114.2(9)
C(6)-C(5)-H(5A)	108.7
N(1)-C(5)-H(5A)	108.7
C(6)-C(5)-H(5B)	108.7
N(1)-C(5)-H(5B)	108.7
H(5A)-C(5)-H(5B)	107.6
C(7)-C(6)-C(5)	117.0(11)
C(7)-C(6)-H(6A)	108.0
C(5)-C(6)-H(6A)	108.0
C(7)-C(6)-H(6B)	108.0
C(5)-C(6)-H(6B)	108.0
H(6A)-C(6)-H(6B)	107.3
N(1)#1-C(7)-C(6)	106.8(10)
N(1)#1-C(7)-H(7A)	110.4
C(6)-C(7)-H(7A)	110.4

N(1)#1-C(7)-H(7B)	110.4
C(6)-C(7)-H(7B)	110.4
H(7A)-C(7)-H(7B)	108.6

Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z+1/2 #2 x,-y,z-1/2 #3 -x,-y,-z+1

	U11	U ²²	U ³³	U ²³	U13	U12	
Cd(1)	18(1)	18(1)	25(1)	0	12(1)	0	
S(1)	18(1)	30(1)	20(1)	3(1)	7(1)	-4(1)	
N(1)	39(3)	22(2)	24(3)	6(2)	7(2)	14(2)	
C(1)	50(4)	79(5)	107(7)	65(4)	62(5)	38(4)	
C(2)	122(7)	34(3)	94(6)	33(4)	93(5)	35(4)	
C(3)	11(7)	29(6)	24(8)	-11(5)	0(5)	-9(6)	
C(4)	15(6)	25(6)	28(7)	-6(4)	3(4)	-18(4)	
C(5)	7(5)	7(5)	15(5)	8(3)	4(4)	6(4)	
C(6)	23(6)	30(6)	28(7)	17(5)	3(5)	-11(5)	
C(7)	35(8)	37(6)	25(8)	-8(5)	8(6)	-18(6)	

Table S4. Anisotropic displacement parameters ($Å^2x \ 10^3$) for [**Cd-1**']_x. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}$]

	Х	У	Z	U(eq)	
H(1A)	-2319	1112	2112	84	
H(1B)	-2439	859	4111	84	
H(2A)	-1015	1889	5627	83	
H(2B)	-1810	2727	4172	83	
H(3A)	152	3964	4462	27	
H(3B)	595	2792	5699	27	
H(4A)	1280	3805	3217	28	
H(4B)	1617	2523	4219	28	
H(5A)	-1639	2532	620	12	
H(5B)	-1683	3674	1891	12	
H(6A)	-1054	4270	-414	34	
H(6B)	-251	4439	1628	34	
H(7A)	-245	2600	-1041	39	
H(7B)	530	3678	-322	39	

Table S5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters ($Å^2x$ 10³) for [Cd-1']_x.

Identification code

Empirical formula

Formula weight

Temperature

Wavelength Crystal system

Space group

Volume

F(000)

Crystal size

Index ranges

Ζ

Unit cell dimensions

Density (calculated)

Absorption coefficient

Reflections collected

Independent reflections

Absorption correction

Refinement method

Goodness-of-fit on F^2

R indices (all data)

Theta range for data collection

Completeness to theta = 60.84°

Max. and min. transmission

Data / restraints / parameters

Final R indices [I>2sigma(I)]

Largest diff. peak and hole

 $[Cd-1'-W(CO)_5]_2$ C14 H16 Cd N2 O5 S2 W 652.66 110(2) K 1.54178 Å Monoclinic P2(1)/ca = 14.574(3) Å $\alpha = 90^{\circ}$. b = 11.540(3) Å $\beta = 115.686(11)^{\circ}$. c = 12.711(3) Å $\gamma = 90^{\circ}$. 1926.5(8) Å³ 4 2.250 Mg/m^3 21.983 mm⁻¹ 1232 0.03 x 0.02 x 0.01 mm³ 3.36 to 60.84°. -15<=h<=16, -12<=k<=13, -14<=l<=14 14013 2868 [R(int) = 0.1997]97.9 % Semi-empirical from equivalents 0.8101 and 0.5584 Full-matrix least-squares on F² 2868 / 175 / 226 1.070 R1 = 0.0913, wR2 = 0.2265R1 = 0.1401, wR2 = 0.25921.939 and -2.371 e.Å⁻³

Table S6. Crystal data and structure refinement for [Cd-1'-W(CO)₅]₂.

	Х	у	Z	U(eq)	
Cd(1)	6287(1)	4988(2)	259(2)	28(1)	
S (1)	7688(4)	6265(6)	1673(5)	30(1)	
S(2)	4680(4)	5874(6)	-1375(5)	30(1)	
N(1)	7684(18)	3690(20)	640(20)	51(3)	
N(2)	5945(19)	3510(20)	-1190(20)	52(3)	
C(1)	8750(20)	5220(20)	2030(30)	46(4)	
C(2)	8410(20)	3980(30)	1910(30)	48(3)	
C(3)	7290(20)	2500(30)	760(30)	54(3)	
C(4)	6270(20)	2330(30)	-490(30)	54(3)	
C(5)	8160(20)	3840(30)	-10(30)	53(3)	
C(6)	7580(20)	3570(30)	-1160(30)	56(3)	
C(7)	6460(20)	3760(30)	-1920(30)	53(3)	
C(8)	4850(20)	3540(30)	-2000(30)	53(3)	
C(9)	4430(20)	4700(30)	-2490(30)	49(4)	
W(1)	8017(1)	8065(1)	679(1)	34(1)	
C(10)	9380(20)	7500(30)	830(30)	62(5)	
C(11)	7330(20)	7240(20)	-900(30)	41(4)	
C(12)	6600(20)	8700(30)	520(30)	51(4)	
C(13)	8670(30)	8810(30)	2310(30)	58(5)	
C(14)	8240(20)	9430(30)	-30(20)	39(4)	
O(10)	10147(16)	7240(20)	870(20)	71(5)	
O(11)	7010(15)	6697(16)	-1734(16)	41(4)	
O(12)	5867(16)	9077(19)	344(19)	56(5)	
O(13)	9012(18)	9270(20)	3149(18)	64(5)	
O(14)	8398(17)	10280(18)	-431(17)	51(4)	

Cd(1)-N(2)	2.40(2)
Cd(1)-N(1)	2.40(2)
Cd(1)-S(1)	2.527(6)
Cd(1)-S(2)	2.574(6)
Cd(1)-S(2)#1	2.593(6)
S(1)-C(1)	1.86(3)
S(1)-W(1)	2.583(7)
S(2)-C(9)	1.88(3)
S(2)-Cd(1)#1	2.593(6)
N(1)-C(5)	1.30(4)
N(1)-C(3)	1.52(4)
N(1)-C(2)	1.54(3)
N(2)-C(7)	1.46(4)
N(2)-C(8)	1.48(4)
N(2)-C(4)	1.58(4)
C(1)-C(2)	1.50(4)
C(1)-H(1A)	0.9900
C(1)-H(1B)	0.9900
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-C(4)	1.65(4)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(5)-C(6)	1.37(4)
C(5)-H(5)	0.9500
C(6)-C(7)	1.51(4)
C(6)-H(6)	0.9500
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(8)-C(9)	1.49(4)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900

Table S8.	Bond lengths [Å] and angles [°] for [Cd-1'-W(CO) ₅] ₂ .

C(9)-H(9A)	0.9900
C(9)-H(9B)	0.9900
W(1)-C(14)	1.91(3)
W(1)-C(10)	2.02(3)
W(1)-C(11)	2.05(3)
W(1)-C(13)	2.06(3)
W(1)-C(12)	2.11(3)
C(10)-O(10)	1.13(3)
C(11)-O(11)	1.14(3)
C(12)-O(12)	1.09(3)
C(13)-O(13)	1.10(3)
C(14)-O(14)	1.18(3)
N(2)-Cd(1)-N(1)	65.5(8)
N(2)-Cd(1)-S(1)	142.7(7)
N(1)-Cd(1)-S(1)	82.4(6)
N(2)-Cd(1)-S(2)	81.3(6)
N(1)-Cd(1)-S(2)	143.6(6)
S(1)-Cd(1)-S(2)	121.0(2)
N(2)-Cd(1)-S(2)#1	99.5(7)
N(1)-Cd(1)-S(2)#1	105.4(7)
S(1)-Cd(1)-S(2)#1	107.3(2)
S(2)-Cd(1)-S(2)#1	94.2(2)
C(1)-S(1)-Cd(1)	97.4(9)
C(1)-S(1)-W(1)	109.2(10)
Cd(1)-S(1)-W(1)	112.6(2)
C(9)-S(2)-Cd(1)	97.6(9)
C(9)-S(2)-Cd(1)#1	99.5(11)
Cd(1)-S(2)-Cd(1)#1	85.8(2)
C(5)-N(1)-C(3)	121(3)
C(5)-N(1)-C(2)	109(2)
C(3)-N(1)-C(2)	102(2)
C(5)-N(1)-Cd(1)	115(2)
C(3)-N(1)-Cd(1)	105.2(17)
C(2)-N(1)-Cd(1)	102.1(16)
C(7)-N(2)-C(8)	104(2)

C(7)-N(2)-C(4)	115(2)
C(8)-N(2)-C(4)	112(3)
C(7)-N(2)-Cd(1)	110.9(19)
C(8)-N(2)-Cd(1)	108.9(17)
C(4)-N(2)-Cd(1)	105.6(16)
C(2)-C(1)-S(1)	112.8(19)
C(2)-C(1)-H(1A)	109.0
S(1)-C(1)-H(1A)	109.0
C(2)-C(1)-H(1B)	109.0
S(1)-C(1)-H(1B)	109.0
H(1A)-C(1)-H(1B)	107.8
C(1)-C(2)-N(1)	112(2)
C(1)-C(2)-H(2A)	109.3
N(1)-C(2)-H(2A)	109.3
C(1)-C(2)-H(2B)	109.3
N(1)-C(2)-H(2B)	109.3
H(2A)-C(2)-H(2B)	108.0
N(1)-C(3)-C(4)	103(2)
N(1)-C(3)-H(3A)	111.2
C(4)-C(3)-H(3A)	111.2
N(1)-C(3)-H(3B)	111.2
C(4)-C(3)-H(3B)	111.2
H(3A)-C(3)-H(3B)	109.1
N(2)-C(4)-C(3)	112(2)
N(2)-C(4)-H(4A)	109.3
C(3)-C(4)-H(4A)	109.3
N(2)-C(4)-H(4B)	109.3
C(3)-C(4)-H(4B)	109.3
H(4A)-C(4)-H(4B)	108.0
N(1)-C(5)-C(6)	113(3)
N(1)-C(5)-H(5)	123.4
C(6)-C(5)-H(5)	123.4
C(5)-C(6)-C(7)	130(3)
C(5)-C(6)-H(6)	114.9
C(7)-C(6)-H(6)	114.9
N(2)-C(7)-C(6)	106(3)

N(2) C(7) H(7A)	110.6
N(2)-C(7)-H(7A)	110.0
$V(0)-V(7)-\Pi(7A)$	110.0
N(2)-C(7)-H(7B)	110.0
C(0)-C(7)-H(7B)	110.6
H(/A)-C(/)-H(/B)	108.7
N(2)-C(8)-C(9)	116(3)
N(2)-C(8)-H(8A)	108.4
C(9)-C(8)-H(8A)	108.4
N(2)-C(8)-H(8B)	108.4
C(9)-C(8)-H(8B)	108.4
H(8A)-C(8)-H(8B)	107.4
C(8)-C(9)-S(2)	115(2)
C(8)-C(9)-H(9A)	108.6
S(2)-C(9)-H(9A)	108.6
C(8)-C(9)-H(9B)	108.6
S(2)-C(9)-H(9B)	108.6
H(9A)-C(9)-H(9B)	107.5
C(14)-W(1)-C(10)	87.2(13)
C(14)-W(1)-C(11)	91.5(11)
C(10)-W(1)-C(11)	89.1(14)
C(14)-W(1)-C(13)	92.0(12)
C(10)-W(1)-C(13)	91.9(15)
C(11)-W(1)-C(13)	176.3(11)
C(14)-W(1)-C(12)	91.4(12)
C(10)-W(1)-C(12)	178.5(13)
C(11)-W(1)-C(12)	91.6(13)
C(13)-W(1)-C(12)	87.5(15)
C(14)-W(1)-S(1)	178.0(9)
C(10)-W(1)-S(1)	94.4(10)
C(11)-W(1)-S(1)	89.6(8)
C(13)-W(1)-S(1)	86.8(9)
C(12)-W(1)-S(1)	87.0(9)
O(10)-C(10)-W(1)	175(3)
O(11)-C(11)-W(1)	174(3)
O(12)-C(12)-W(1)	174(3)
O(13)-C(13)-W(1)	175(3)
	- (-)

O(14)-C(14)-W(1) 178(2)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z

Table S9. Anisotropic displacement parameters (Å²x 10³) for [Cd-1'-W(CO)₅]₂. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U ¹¹	U ²²	U33	U23	U13	U ¹²
 Cd(1)	19(1)	33(1)	33(1)	-3(1)	13(1)	1(1)
S(1)	19(3)	37(3)	33(3)	-3(2)	9(2)	-1(2)
S(2)	19(3)	42(4)	29(3)	0(3)	9(2)	-2(2)
N(1)	36(4)	52(4)	55(6)	-14(4)	9(4)	16(4)
N(2)	45(5)	55(5)	45(5)	-21(4)	8(4)	12(4)
C(1)	27(5)	47(5)	53(7)	-2(5)	5(5)	10(4)
C(2)	31(5)	48(4)	54(6)	-8(5)	7(4)	13(4)
C(3)	43(5)	50(4)	55(6)	-17(5)	8(5)	15(4)
C(4)	46(6)	52(4)	50(6)	-20(4)	9(5)	12(4)
C(5)	39(5)	57(6)	55(6)	-16(5)	11(4)	20(5)
C(6)	45(5)	58(6)	54(6)	-16(5)	10(5)	15(5)
C(7)	46(5)	57(6)	48(5)	-22(5)	11(4)	12(5)
C(8)	45(5)	58(5)	43(6)	-18(5)	7(4)	8(5)
C(9)	41(7)	58(7)	39(6)	-16(5)	8(5)	7(6)
W(1)	29(1)	40(1)	36(1)	-2(1)	17(1)	-2(1)
C(10)	27(6)	67(13)	101(15)	5(10)	34(7)	-8(7)
C(11)	48(9)	38(10)	41(5)	-2(5)	22(7)	-8(8)
C(12)	49(7)	47(10)	73(12)	16(8)	42(8)	13(7)
C(13)	84(12)	55(10)	34(6)	0(7)	23(8)	-31(10)
C(14)	55(11)	46(8)	30(9)	-13(6)	30(9)	-14(7)
O(10)	29(7)	73(13)	112(15)	1(11)	31(8)	0(8)
O(11)	49(9)	44(10)	41(7)	-6(6)	30(7)	-9(7)
O(12)	49(7)	52(10)	78(12)	17(9)	38(9)	19(8)
O(13)	86(12)	61(11)	41(7)	-10(7)	22(9)	-30(10)
O(14)	67(11)	42(9)	45(10)	-6(7)	25(9)	-14(8)

	Х	У	Z	U(eq)	
H(1A)	9084	5366	1510	56	
H(1B)	9265	5359	2844	56	
H(2A)	8063	3843	2415	58	
H(2B)	9014	3471	2176	58	
H(3A)	7115	2474	1430	65	
H(3B)	7805	1887	868	65	
H(4A)	6413	1750	-972	65	
H(4B)	5702	2040	-337	65	
H(5)	8841	4106	282	64	
H(6)	7939	3195	-1534	67	
H(7A)	6340	4576	-2200	64	
H(7B)	6218	3242	-2608	64	
H(8A)	4461	3239	-1587	63	
H(8B)	4733	3006	-2656	63	
H(9A)	3688	4625	-2964	59	
H(9B)	4731	4938	-3027	59	

Table S10. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for [Cd-1'-W(CO)₅]₂.