Synthesis and characterization of proton conducting oxyanion doped Ba₂Sc₂O₅

Supplementary data

Impedance Data

Fig 1. Impedance spectra for $Ba_2Sc_{1.6}P_{0.4}O_{5.4}$ in dry N_2 at (a) 300 °C, (b) 380 °C showing typical bulk and grain boundary semicircles (a)

Structure refinements using X-ray diffraction data

Fig. 2 Observed (cross), calculated (line), reflection positions and difference plots (observed – calculated) of $Ba_2Sc_{1.6}P_{0.4}O_{5.4}$ from the Rietveld refinement for room temperature X-ray diffraction data.

Table 1 Refined crystal structure of $Ba_2Sc_{1.6}P_{0.4}O_{5.4}$ using cubic *Pm3m* (221) space group using room temperature X-ray diffraction data.

		C	ı (Å)	R_{wp}	R_p	χ^2
		4.1504 (1)		5.15	3.70	1.83
		x	У	Z	Fractional occupancy	U_{iso} (Å ² x 100)
Ba	1(b)	1⁄2	1⁄2	1/2	1.00	2.22 (2)
Sc	1(a)	0	0	0	0.794 (8)	2.67 (6)
Р	1(a)	0	0	0	0.206 (8)	2.67 (6)
0	3(d)	0	0	1/2	0.896 (5)	3.6 (1)

Fig. 3 Observed (cross), calculated (line), reflection positions and difference plots (observed – calculated) of $Ba_2Sc_{1.5}P_{0.5}O_{5.5}$ from the Rietveld refinement for room temperature X-ray diffraction data.

Table 2. Refined crystal structure of $Ba_2Sc_{1.5}P_{0.5}O_{5.5}$ using cubic *Pm3m* (221) space group using room temperature X-ray diffraction data.

		<u>a (Å)</u> 4.1404 (1)		R_{wp}	R_p	χ^2
				4.00	2.71	2.44
		x	У	Ζ	Fractional occupancy	U _{iso} (Å ² x 100)
Ba	1(b)	1⁄2	1⁄2	1/2	1.000	1.88 (1)
Sc	1(a)	0	0	0	0.748 (7)	2.59 (5)
Р	1(a)	0	0	0	0.252 (7)	2.59 (5)
0	3(d)	0	0	1/2	0.917 (4)	3.9 (1)

Fig. 4 Observed (cross), calculated (line), reflection positions and difference plots (observed – calculated) of $Ba_2Sc_{1.4}Si_{0.6}O_{5.3}$ from the Rietveld refinement for room temperature X-ray diffraction data.

Table 3. Refined crystal structure of $Ba_2Sc_{1.4}Si_{0.6}O_{5.3}$ using cubic *Pm3m* (221) space group using room temperature X-ray diffraction data.

		<i>a</i> (Å) 4.1225 (1)		R_{wp}	R_p	χ^2
				8.72	6.07	2.81
		x	у	Ζ	Fractional occupancy	$U_{iso} (\text{\AA}^2 x 100)$
Ba	1(b)	1/2	1⁄2	1/2	1.000	1.69 (2)
Sc	1(a)	0	0	0	0.739 (8)	3.12 (7)
Si	1(a)	0	0	0	0.261 (8)	3.12 (7)
0	3(d)	0	0	1/2	0.874 (5)	3.6 (1)