Electronic Supplementary Information (ESI[†])

for

Photo-induced DNA cleavage activity and remarkable photocytotoxicity of lanthanide(III) complexes of a polypyridyl ligand

Akhtar Hussain,^a Sudarshan Gadadhar,^b Tridib K. Goswami,^a Anjali A. Karande^{*b} and Akhil R. Chakravarty^{*a}

^a Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India

[E-mail: arc@ipc.iisc.ernet.in for general correspondence].

^b Department of Biochemistry, Indian Institute of Science, Bangalore-560 012, India

[E-mail: anjali@biochem.iisc.ernet.in for correspondence on cellular studies].

Scheme S1 Reaction conditions and the reagents used for the synthesis of the ligands: (a) Friedel-Craft reaction using acetyl chloride/aluminum chloride in dry DCM, (b) ethyl acetate and sodium sand in diethyl ether, (c) n-BuLi, 2-bromopyridine in dry THF, 6 h, -78 °C followed by basic alumina column chromatography using THF/hexane (1:5) as eluent, (d) MnO₂, overnight, (e) 2:1 H₂SO₄/HNO₃, reflux followed by neutralization with NaOH and purified by silica column chromatography (100-200 mesh) using DCM as eluent and (f) 1,2- phenylenediamine in EtOH, reflux (30 min).

Scheme S2 Generalized reaction scheme for the syntheses of the complexes 1-5 (DCM = dichloromethane).

Fig. S1 ESI-MS spectrum of $[La(pyphen)(acac)_2(NO_3)]$ (1) in 10% aqueous MeOH showing the prominent $[M-(NO_3^{-})]^+$ peak. The peak at 258.40 (m/z) is due to $[pyphen+H]^+$.

Fig. S2 ESI-MS spectrum of $[Gd(pyphen)(acac)_2(NO_3)]$ (2) in 10% aqueous MeOH showing the prominent $[M-(NO_3^{-})]^+$ peak. The peak at 258.40 (m/z) is due to $[pyphen+H]^+$.

Fig. S3 ESI-MS spectrum of $[La(pydppz)(acac)_2(NO_3)]$ (3) in 10% aqueous MeCN showing the prominent $[M-(NO_3^{-})]^+$ peak.

Fig. S4 ESI-MS spectrum of $[Gd(pydppz)(acac)_2(NO_3)]$ (4) in 10% aqueous MeCN showing the prominent $[M-(NO_3^{-})]^+$ peak.

Fig. S5 ESI-MS spectrum of $[La(pydppz)(anacac)_2(NO_3)]$ (5) in 10% aqueous MeOH showing the prominent $[M-(NO_3^{-})]^+$ peak. The minor peak at 285.73 (m/z) is due to $[Hanacac + Na]^+$.

Fig. S6 IR spectrum of [La(pyphen)(acac)₂(NO₃)] (1).

Fig. S7 IR spectrum of $[Gd(pyphen)(acac)_2(NO_3)]$ (2).

Fig. S8 IR spectrum of [La(pydppz)(acac)₂(NO₃)] (3).

Fig. S9 IR spectrum of [Gd(pydppz)(acac)₂(NO₃)] (4).

Fig. S10 IR spectrum of [La(pyphen)(anacac)₂(NO₃)].

Fig. S11 ¹H NMR spectrum of $[La(pyphen)(acac)_2(NO_3)]$ (1) in DMSO-*d*₆. The peak marked S between 2-3 ppm is due to solvent.

Fig. S12 ¹H NMR spectrum of $[La(pydppz)(acac)_2(NO_3)]$ (**3**) in DMSO-*d*₆. The peak marked S between 2-3 ppm is due to solvent.

Fig. S13 1H NMR spectrum of $[La(pydppz)(anacac)_2(NO_3)]$ (5) in DMSO-*d*₆. The peak marked Sol between 2-3 ppm is due to solvent.

Fig. S14 The electronic absorption spectra of complexes 2(--) and 4(-) in DMF. The wavelength 365 nm used for the DNA photocleavage experiments is indicated by a downward arrow.

Fig. S15 Unit cell packing diagram of the complex $[Gd(pyphen)(acac)_2(NO_3)]$ (2). The complex crystallized in the triclinic *P*-1 space group with Z = 2.

Fig. S16 Absorption spectral traces of complex **4** in 5 mM Tris-HCl buffer (pH 7.2) on increasing the quantity of calf thymus DNA. The inset shows the plots of $\Delta \varepsilon_{af} / \Delta \varepsilon_{bf}$ vs. [DNA] for [Gd(pyphen)(acac)_2(NO_3)] (**2**, •) and [Gd(pydppz)(acac)_2(NO_3)] (**4**, •).

Fig. S17 Derivative plots of dA_{260}/dT vs. *T* for the thermal denaturation of 180 µM calf thymus DNA alone and on addition of complexes **2** and **4**. (b) Plots of $(\eta/\eta_0)^{1/3}$ vs. [compound]/[DNA] showing the effect of increasing concentration of the complexes [Gd(pyphen)(acac)₂(NO₃)] (**2**, \blacktriangle), [Gd(pypdppz)(acac)₂(NO₃)] (**4**, \triangledown), ethidium bromide (EB, \square) and Hoechst 33258 (\circ) on the relative viscosities of CT-DNA at 37.0(± 0.1) °C in 5 mM Tris-HCl buffer (pH 7.2) containing 2.5 – 20% DMF and 180 µM calf thymus DNA.

Fig. S18 Bar diagram showing the extent of photocleavage of SC pUC19 DNA (0.2 μ g, 30 μ M) by [Gd(pydppz)(acac)₂(NO₃)] (4) in the presence of various additives in Tris-HCl buffer containing 10% DMF. The complex concentration and exposure time are 1.0 μ M and 2 h, respectively. The additive concentrations/quantities are: sodium azide, 500 μ M; KI, 500 μ M; TEMP, 500 μ M; DABCO, 500 μ M; D₂O, 16 μ L; DMSO, 4 μ L; catalase, 4 units; SOD, 4 units.

Fig. S19 Cell viability plots showing the photocytotoxicity of the pydppz complexes **1** and **2** in HeLa cells on 4 h incubation in dark followed by exposure to UV-A light of 365 nm (0.55 J cm⁻²) for 15 min as determined from the MTT assay. The non-linear fitted curves for dark-treated and photo-exposed cells for complex **1** are shown by black circles (•) and blue circles (•), respectively. For complex **2**, they are shown by black squares (**■**) and blue squares (**■**), respectively.

DNA content

Fig. S20 Complex **4** induced apoptotic cell death by flow cytometric analysis: (a) control cells in the dark, (b) control cells in UV-A light, (c) cells treated with complex **4** in the dark and (d) cells treated with complex **4** (0.6 μ M) in UV-A light (photoexposure time = 15 min, incubation time = 24 h).