## **Supporting Information**

## **Organically Templated Niobium Germanate: Ionothermal Synthesis of**

## $(C_8H_{24}N_4)[NbOGe_6O_{13}(OH)_2F]$

Quang Bac Nguyen<sup>a</sup> and Kwang-Hwa Lii\*,a,b

<sup>a</sup> Department of Chemistry, National Central University, Jhongli, Taiwan 320, R.O.C. <sup>b</sup> Institute of Chemistry, Academia Sinica, Taipei, Taiwan 115, R.O.C.

**Figure S1**. The observed X-ray powder pattern (**a**) and simulated powder pattern based on the results from single-crystal X-ray diffraction (**b**) of the compound  $(C_8H_{24}N_4)[NbOGe_6O_{13}(OH)_2F]$  (denote as **1**).

Figure S2. The infrared spectrum of 1 (KBr pellet method).

**Figure S3**. The thermogravimetric analysis of **1** in flowing  $N_2$  gas at a heating rate of 5 °C min<sup>-1</sup>.

Figure S4. The response of second harmonic generation of 1 (blue curve) and that of KDP (red curve).

**Figure S5**. The structure of **1** viewed along the [011] direction to show 10-ring channels. The organic ammonium cations and the H atoms of the OH groups are not shown for clarity.

Table S1. Selected N···O distances showing hydrogen bonding interactions in 1



Figure S1



## **Figure S2**

The FTIR spectrum of **1** was measured from a powder sample pelletized with KBr on a Jasco FTIR-4200 series spectrophotometer over the range  $4000-400 \text{ cm}^{-1}$  at the resolution of  $4 \text{ cm}^{-1}$ .

The band centered at 3468 cm<sup>-1</sup> is the stretching vibrations of OH and N–H groups. The bands at 3294, 3190 and from 3030 to 2870 cm<sup>-1</sup> correspond to the stretching vibrations of the secondary amine N–H, the protonated amine R–NH<sub>3</sub><sup>+</sup>, and the CH<sub>2</sub> groups, respectively.<sup>1-4</sup> The bending vibrations of the OH, NH<sub>3</sub><sup>+</sup> groups are at 1638 and 1605 cm<sup>-1</sup>.<sup>3</sup> The bands at 1510, 1478 and 1431 cm<sup>-1</sup> are bending vibrations of N–H, C–N and CH<sub>2</sub> groups, respectively. The band at 1181 cm<sup>-1</sup> is assigned to the C–N stretching vibration of the amine.<sup>4</sup> The broad, strong bands from 871 to 753 cm<sup>-1</sup> can be assigned to the vibrations of Ge–O and Ge–F bonds.<sup>2</sup> The bands at 574 and 476 cm<sup>-1</sup> are attributed to the symmetrical stretching and bending vibration of the Ge–O bonds.<sup>3</sup> The bands at 984 and 951 cm<sup>-1</sup> are for the Nb–O vibrations.<sup>5</sup>

- 1. Zhang, H.-X.; Zhang, J.; Zheng, S.-T.; Yang, G.-Y. Inorg. Chem. 2003, 42, 6595–6597.
- 2. Conradsson, T.; Zou, X.; Dadachov, M. S. Inorg. Chem. 2000, 39, 1716–1720.
- 3. Beitone, L.; Loiseau, T.; Férey, G. Inorg. Chem. 2002, 41, 3962–3966.
- 4. Rao, C. N. R. *Chemical Applications of Infrared Spectroscopy*. Academic Press: New York, 1963, pp 245–281.
- 5. Andersen, K. B.; Christensen, E.; Berg, R. W.; Bjerrum, N. J.; von Barner, J. H. *Inorg. Chem.* **2000**, *39*, 3449–3454.



Figure S3



Figure S4



Figure S5

|             | <b>Distances</b> / Å |
|-------------|----------------------|
| N(1)…O(1)   | 3.177(7)             |
| N(1)…O(4)   | 3.301(5)             |
| N(1)…O(5)   | 2.954(5)             |
| N(1)…O(14)  | 2.752(5)             |
| N(1)…O(15)  | 3.282(5)             |
| N(1)…O(16)  | 3.334(5)             |
| N(2)…O(3)   | 3.001(4)             |
| N(2)…O(6)   | 3.335(4)             |
| N(2)…O(13)  | 2.796(4)             |
| N(2)…O(15A) | 3.294(4)             |
| N(3)…O(11)  | 3.263(6)             |
| N(3)…O(15B) | 3.113(6)             |
| N(4)…O(7)   | 3.294(6)             |
| N(4)…O(10)  | 3.029(5)             |
| N(4)…O(12)  | 3.042(6)             |
| N(4)…O(15C) | 2.907(5)             |
| N(4)…O(16C) | 2.786(6)             |

Table S1. Selected N···O distances showing hydrogen bonding interactions in 1