| Complex 1                                        | Complex 2                                                                                                                                                                                                                                                                               |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{56}H_{70}Mn_6N_{12}O_{22}\bullet 10(CH_3OH)$ | $C_{66.37}H_{75.75}Mn_8N_{16}O_{22.5}\bullet 5.25(CH_3OH)\bullet 9.45(H_2O)$                                                                                                                                                                                                            |
| 1913.30                                          | 2251.67                                                                                                                                                                                                                                                                                 |
| Triclinic                                        | Triclinic                                                                                                                                                                                                                                                                               |
| 11.514(3)                                        | 16.608(5)                                                                                                                                                                                                                                                                               |
| 11.767(4)                                        | 17.907(5)                                                                                                                                                                                                                                                                               |
| 17.730(6)                                        | 19.811(6)                                                                                                                                                                                                                                                                               |
| 95.80(5)                                         | 78.12(4)                                                                                                                                                                                                                                                                                |
| 105.73(5)                                        | 65.89(4)                                                                                                                                                                                                                                                                                |
| 99.28(5)                                         | 75.79(3)                                                                                                                                                                                                                                                                                |
| 2255.3(15)                                       | 5176(3)                                                                                                                                                                                                                                                                                 |
| 100(2)                                           | 85(2)                                                                                                                                                                                                                                                                                   |
| <i>P</i> -1                                      | <i>P</i> -1                                                                                                                                                                                                                                                                             |
| 1                                                | 2                                                                                                                                                                                                                                                                                       |
| 25491                                            | 51148                                                                                                                                                                                                                                                                                   |
| 11459                                            | 27840                                                                                                                                                                                                                                                                                   |
| 0.0530                                           | 0.0543                                                                                                                                                                                                                                                                                  |
| 0.0679                                           | 0.0498                                                                                                                                                                                                                                                                                  |
| 0.1751                                           | 0.1102                                                                                                                                                                                                                                                                                  |
| 0.1390                                           | 0.1136                                                                                                                                                                                                                                                                                  |
| 0.1942                                           | 0.1179                                                                                                                                                                                                                                                                                  |
|                                                  | Complex <b>1</b><br>$C_{56}H_{70}Mn_6N_{12}O_{22} \cdot 10(CH_3OH)$<br>1913.30<br>Triclinic<br>11.514(3)<br>11.767(4)<br>17.730(6)<br>95.80(5)<br>105.73(5)<br>99.28(5)<br>2255.3(15)<br>100(2)<br><i>P</i> -1<br>1<br>25491<br>11459<br>0.0530<br>0.0679<br>0.1751<br>0.1390<br>0.1942 |

Data were collected on an Xcalibur PX diffractometer with CCD Onyx and Mo-K $\alpha$  radiation ( $\lambda = 0.71073$  Å) at 100 K and 85 K for **1** and **2** respectively. Structures were solved by direct methods and refined by full-matrix least-squares techniques on  $F^2$  (SHELX).<sup>1</sup>

In both structures the non-hydrogen atoms, except disordered atoms, were refined anisotropically, and hydrogen atoms were placed in calculated positions and refined using a riding model.

In the structure of 1 acetate anion was disordered over two position with occupation factors 0.56/0.46. Also one of the methanol solvent molecules was splitted into two positions due to disorder.

In the structure of 2 one of the coordination sites of Mn7 atom consists of disordered over two positions methanol (67%, 20%) and water (13%) molecules. Some other water and methanol molecules were refined with partial occupation due to disorder.

[1] G.M. Sheldrick, Acta Cryst. (2008) A64 112.

## **Synthesis**

 $[Mn^{III}_{6}O_{2}(phamidox)_{6}(OAc)_{2}(MeOH)_{4}]$  10MeOH (1<sup>1</sup>10H<sub>2</sub>O). Mn(OAc)<sub>2</sub>·4H<sub>2</sub>O (1 mmol, 245 mg), phamidoxH<sub>2</sub> (1 mmol, 166 mg) and NEt<sub>3</sub> (2 mmol) were stirred in MeOH (20 ml) for a period of 35 minutes to form a dark brown solution. After filtration the solution was left to slowly evaporate and black crystals were formed during ~4 days. The crystals were collected by filtration, washed with Et<sub>2</sub>O (2 x 5 mL), and dried in vacuo; yield, ~40%.

 $[Mn^{III}_{8}O_{4}(phamidox)_{8}(MeOH)_{2}(H_{2}O)]$  5.25MeOH 9.45H<sub>2</sub>O (2<sup>•</sup> 5.25MeOH 9.45H<sub>2</sub>O). MnBr<sub>2</sub>·4H<sub>2</sub>O (1 mmol, 286 mg), phamidoxH<sub>2</sub> (1 mmol, 166 mg) and NEt<sub>3</sub> (2 mmol) were stirred in MeOH (20 ml) for a period of ~45 minutes to form a dark brown solution. The solution was filtered and allowd to evaporate slowly. Black crystals were formed during ~5 days and were collected by filtration, washed with  $Et_2O$  (2 x 5 mL), and dried in vacuo; yield, ~30%.



Fig. S1. Interaction schemes for complexes 1 (left) and 2 (right).