Electronic Supporting Information

For the

Manuscript Entitled

Self-assembled metalla-bowls for selective sensing of multicarboxylate anions

Anurag Mishra^a, Vaishali Vajpayee^a, Hyunuk Kim^b, Min Hyung Lee,^a Hyunji Jung^a, Ming Wang^c, Peter J. Stang^c and Ki-Whan Chi^a*

^a Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea

^bDepartment of Chemistry, Pohang University of Science and Technology, San 31

Hyojadong, Pohang 790-784, Republic of Korea

^cDepartment of Chemistry, University of Utah, Salt Lake City, Utah 84112, U.S.A.

E-mail: kwchi@ulsan.ac.kr

Table of Contents

1.	¹ H spectra of ligand 1 , acceptor 2 and compound 4 3)
2.	¹ H spectra of ligand 1 , acceptor 3 and compound 5 4	ļ
3.	Absorption spectra of 2, 3, 4 and 5	
4.	Emission spectra of 3 , 5 and 5 with oxalate5	
5.	Job's plot on titration with oxalate6)
6.	¹ H NMR titration data of 5 in presence of oxalate anion6)
7.	Crystal data and structure refinement parameters of 4 7	7
8.	Crystal structure (labeled) of metalla-bowl 4	8
9.	Bond lengths [Å] and angles [°] for metalla-bowl 49	-24

Fig. S1. Comparative NMR of metalla-bowl 4 with ligand 1 and Ru-acceptor 2 in nitromethane-d₃

Fig. S2 Comparative NMR of metalla-bowl 5 with ligand 1 and Ru-acceptor 3 in nitromethane-d₃

Fig. S3. Comparative absorption spectra of Ru acceptors **2**, **3** and metalla-bowls **4** and **5** in methanol.

Fig. S4. Comparative emission spectra of Ru acceptor **3**, metalla-bowl **5** and after addition of 6.0 eq. of oxalate anion in **5** in methanol.

Fig. S5 Job's plot of oxalate anion titrations with **5** showing 1:1 fitting curve.

Fig. S6 ¹H NMR spectra of **5** in nitromethane-d₃ with increasing amounts of $[Bu_4N]_2$ oxalate. (a) 0, (b) 0.5, (c) 1.0, and (d) 2.2 equiv of $[Bu_4N]_2$ oxalate.

Table 1. Crystal data and structure refinement for 4.			
Empirical formula	C165 H89.50 F12 N12.50 O24 Ru4 S4		
Formula weight	3391.51		
Temperature	100(2) K		
Wavelength	1.00000 Å		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	$a = 16.255(3)$ Å $\alpha = 78.93(3)$		
	b = 17.304(4) Å	$\beta = 70.96(3)^{\circ}$	
	c = 21.415(4) Å	γ= 74.07(3)°	
Volume	5440.5(19) Å ³		
Z	2		
Density (calculated)	2.070 g/cm ³		
Absorption coefficient	1.849 mm ⁻¹		
F(000)	3414		
Crystal size	$0.20\times0.05\times0.04~mm^{_3}$		
Theta range for data collection	1.92 to 30.07°		
Index ranges -15≤ <i>h</i> ≤15, -16≤ <i>k</i> ≤17, -20≤ <i>l</i> ≤19		0 <i>≤l</i> ≤19	
Reflections collected	13204		
Independent reflections	7360 [R(int) = 0.0335]		
Completeness to theta = 30.07° 64.1 %			
Max. and min. transmission	0.9372 and 0.7347		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	7360 / 0 / 1154		
Goodness-of-fit on F ²	1.865		
Final R indices [I>2sigma(I)]	$R_1 = 0.1365, wR_2 = 0.3840$		
R indices (all data) $R_1 = 0.1450, wR_2 = 0.3979$		79	
Extinction coefficient	ion coefficient $0.024(2)$		
Largest diff. peak and hole	1.350 and -0.658 e.Å-3		
Platon_squeeze_void_count_electrons 350			

Fig. S7 Crystal structure (labeled) of metalla-bowl 4.

Ru(1)-N(6)	2.061(16)	
Ru(1)-C(59)	2.11(2)	
Ru(1)-O(3O)	2.116(11)	
Ru(1)-O(4O)	2.124(11)	
Ru(1)-C(60)	2.16(3)	
Ru(1)-C(56)	2.169(18)	
Ru(1)-C(57)	2.20(2)	
Ru(1)-C(58)	2.20(2)	
Ru(1)-C(55)	2.25(2)	
Ru(2)-N(1)	2.059(19)	
Ru(2)-O(2O)	2.080(12)	
Ru(2)-O(1O)	2.130(12)	
Ru(2)-C(68)	2.141(19)	
Ru(2)-C(65)	2.154(19)	
Ru(2)-C(70)	2.167(17)	
Ru(2)-C(66)	2.168(19)	
Ru(2)-C(67)	2.176(18)	
Ru(2)-C(69)	2.18(2)	
Ru(3)-O(5O)	2.032(12)	
Ru(3)-N(5)	2.093(17)	
Ru(3)-O(6O)	2.122(13)	
Ru(3)-C(39)	2.127(18)	
Ru(3)-C(38)	2.128(19)	
Ru(3)-C(37)	2.148(18)	
Ru(3)-C(40)	2.15(2)	
Ru(3)-C(35)	2.164(19)	
Ru(3)-C(36)	2.24(2)	
Ru(4)-N(10)	2.077(15)	
Ru(4)-O(8O)	2.118(13)	
Ru(4)-O(7O)	2.128(12)	
Ru(4)-C(49)	2.14(2)	
Ru(4)-C(50)	2.157(17)	
Ru(4)-C(46)	2.16(2)	
Ru(4)-C(45)	2.175(18)	

Table 2. Bond lengths [Å] and angles [°] for metalla-bowl 4.

_

Ru(4)-C(47)	2.18(2)
Ru(4)-C(48)	2.23(2)
O(1)-C(6)	1.34(2)
O(2)-C(12)	1.21(3)
O(3)-C(23)	1.29(2)
O(4)-C(29)	1.23(3)
N(1)-C(2)	1.33(3)
N(1)-C(1)	1.38(3)
N(2)-C(6)	1.30(3)
N(2)-C(5)	1.42(3)
N(3)-C(11)	1.27(2)
N(3)-C(7)	1.42(3)
N(4)-C(13)	1.36(4)
N(4)-C(12)	1.40(3)
N(5)-C(17)	1.29(3)
N(5)-C(16)	1.31(3)
N(6)-C(18)	1.33(3)
N(6)-C(19)	1.33(2)
N(7)-C(23)	1.41(3)
N(7)-C(22)	1.43(3)
N(8)-C(28)	1.30(3)
N(8)-C(24)	1.32(3)
N(9)-C(29)	1.34(3)
N(9)-C(30)	1.45(3)
N(10)-C(33)	1.30(2)
N(10)-C(34)	1.35(3)
C(1)-C(3)	1.37(3)
C(2)-C(4)	1.39(3)
C(3)-C(5)	1.43(3)
C(4)-C(5)	1.38(3)
C(6)-C(7)	1.36(3)
C(7)-C(8)	1.45(3)
C(8)-C(9)	1.37(3)
C(9)-C(10)	1.44(3)
C(10)-C(11)	1.41(3)
C(11)-C(12)	1.48(3)

C(13)-C(14)	1.30(3)
C(13)-C(15)	1.44(4)
C(14)-C(16)	1.39(3)
C(15)-C(17)	1.36(4)
C(18)-C(20)	1.33(3)
C(19)-C(21)	1.43(3)
C(20)-C(22)	1.37(3)
C(21)-C(22)	1.42(3)
C(23)-C(24)	1.47(4)
C(24)-C(25)	1.43(4)
C(25)-C(26)	1.32(3)
C(26)-C(27)	1.46(3)
C(27)-C(28)	1.33(3)
C(28)-C(29)	1.47(4)
C(30)-C(32)	1.32(3)
C(30)-C(31)	1.38(3)
C(31)-C(33)	1.40(3)
C(32)-C(34)	1.40(3)
C(35)-C(40)	1.37(3)
C(35)-C(36)	1.52(3)
C(36)-C(37)	1.38(3)
C(37)-C(38)	1.48(3)
C(37)-C(41)	1.56(3)
C(38)-C(39)	1.30(3)
C(39)-C(40)	1.30(3)
C(40)-C(42)	1.53(3)
C(42)-C(43)	1.49(3)
C(42)-C(44)	1.60(4)
C(45)-C(50)	1.40(3)
C(45)-C(46)	1.49(3)
C(45)-C(51)	1.58(3)
C(46)-C(47)	1.37(3)
C(47)-C(48)	1.35(3)
C(48)-C(49)	1.42(3)
C(48)-C(52)	1.54(3)
C(49)-C(50)	1.35(3)

C(52)-C(53)	1.41(4)
C(52)-C(54)	1.57(3)
C(55)-C(56)	1.37(3)
C(55)-C(60)	1.42(4)
C(55)-C(61)	1.47(3)
C(56)-C(57)	1.51(3)
C(57)-C(58)	1.39(3)
C(58)-C(59)	1.35(3)
C(58)-C(62)	1.48(3)
C(59)-C(60)	1.54(3)
C(62)-C(64)	1.49(3)
C(62)-C(63)	1.67(4)
C(65)-C(66)	1.44(3)
C(65)-C(70)	1.47(3)
C(65)-C(71)	1.57(3)
C(66)-C(67)	1.27(3)
C(67)-C(68)	1.33(3)
C(68)-C(69)	1.41(3)
C(68)-C(72)	1.56(3)
C(69)-C(70)	1.43(3)
C(72)-C(73)	1.54(3)
C(72)-C(74)	1.54(3)
C(10)-O(3O)	1.22(2)
C(10)-O(10)	1.31(3)
C(10)-C(20)	1.46(3)
C(2O)-O(4O)	1.19(2)
C(2O)-O(2O)	1.38(2)
C(3O)-O(8O)	1.17(2)
C(3O)-O(6O)	1.24(2)
C(3O)-C(4O)	1.46(3)
C(4O)-O(7O)	1.26(2)
C(4O)-O(5O)	1.38(2)
S(1F)-O(2F)	1.34(2)
S(1F)-O(3F)	1.501(18)
S(1F)-O(1F)	1.557(19)
S(1F)-C(1F)	2.14(8)

F(1F)-C(1F)	0.89(5)
F(2F)-C(1F)	1.39(4)
F(3F)-C(1F)	1.72(6)
S(2F)-O(5F)	1.364(14)
S(2F)-O(6F)	1.470(14)
S(2F)-O(4F)	1.56(2)
S(2F)-C(2F)	1.71(3)
F(4F)-C(2F)	1.33(3)
F(5F)-C(2F)	1.28(2)
F(6F)-C(2F)	1.43(3)
S(3F)-O(7F)	1.42(2)
S(3F)-O(9F)	1.435(17)
S(3F)-O(8F)	1.433(17)
S(3F)-C(3F)	1.81(3)
F(7F)-C(3F)	1.18(3)
F(8F)-C(3F)	1.46(4)
F(9F)-C(3F)	1.29(3)
N(6)-Ru(1)-C(59)	121.8(10)
N(6)-Ru(1)-O(3O)	84.0(6)
C(59)-Ru(1)-O(3O)	96.6(9)
N(6)-Ru(1)-O(4O)	83.2(5)
C(59)-Ru(1)-O(4O)	154.1(10)
O(3O)-Ru(1)-O(4O)	78.1(6)
N(6)-Ru(1)-C(60)	163.9(9)
C(59)-Ru(1)-C(60)	42.4(10)
O(3O)-Ru(1)-C(60)	94.1(10)
O(4O)-Ru(1)-C(60)	112.2(7)
N(6)-Ru(1)-C(56)	118.1(9)
C(59)-Ru(1)-C(56)	79.4(8)
O(3O)-Ru(1)-C(56)	156.2(8)
O(4O)-Ru(1)-C(56)	95.3(7)
C(60)-Ru(1)-C(56)	67.0(10)
N(6)-Ru(1)-C(57)	92.0(7)
C(59)-Ru(1)-C(57)	65.8(9)
O(3O)-Ru(1)-C(57)	156.4(7)

O(4O)-Ru(1)-C(57)	124.7(7)
C(60)-Ru(1)-C(57)	83.3(9)
C(56)-Ru(1)-C(57)	40.4(7)
N(6)-Ru(1)-C(58)	94.4(9)
C(59)-Ru(1)-C(58)	36.5(9)
O(3O)-Ru(1)-C(58)	120.2(8)
O(4O)-Ru(1)-C(58)	161.4(9)
C(60)-Ru(1)-C(58)	72.6(10)
C(56)-Ru(1)-C(58)	69.5(8)
C(57)-Ru(1)-C(58)	36.8(8)
N(6)-Ru(1)-C(55)	153.0(8)
C(59)-Ru(1)-C(55)	70.0(9)
O(3O)-Ru(1)-C(55)	120.5(7)
O(4O)-Ru(1)-C(55)	90.7(7)
C(60)-Ru(1)-C(55)	37.4(9)
C(56)-Ru(1)-C(55)	36.1(7)
C(57)-Ru(1)-C(55)	70.0(8)
C(58)-Ru(1)-C(55)	83.1(9)
N(1)-Ru(2)-O(2O)	85.1(6)
N(1)-Ru(2)-O(1O)	84.5(6)
O(2O)-Ru(2)-O(1O)	78.6(5)
N(1)-Ru(2)-C(68)	125.4(10)
O(2O)-Ru(2)-C(68)	93.3(7)
O(1O)-Ru(2)-C(68)	148.6(9)
N(1)-Ru(2)-C(65)	112.0(8)
O(2O)-Ru(2)-C(65)	162.7(7)
O(1O)-Ru(2)-C(65)	99.6(9)
C(68)-Ru(2)-C(65)	79.3(9)
N(1)-Ru(2)-C(70)	150.2(9)
O(2O)-Ru(2)-C(70)	123.0(7)
O(1O)-Ru(2)-C(70)	91.1(7)
C(68)-Ru(2)-C(70)	67.7(9)
C(65)-Ru(2)-C(70)	39.7(8)
N(1)-Ru(2)-C(66)	91.5(7)
O(2O)-Ru(2)-C(66)	148.8(8)
O(1O)-Ru(2)-C(66)	132.0(8)

63.7(9)
38.9(8)
69.8(8)
97.5(8)
115.7(7)
165.6(7)
36.0(8)
66.5(9)
80.0(8)
34.0(7)
163.6(9)
94.4(6)
111.5(7)
38.2(8)
70.1(8)
38.3(8)
80.5(7)
67.9(8)
86.3(6)
78.9(5)
83.0(6)
117.1(8)
99.9(8)
163.7(8)
151.5(8)
91.2(7)
129.0(8)
35.5(8)
159.3(8)
113.2(9)
96.4(7)
67.7(8)
40.6(8)
92.0(7)
125.2(10)
150.1(9)

35.2(8)
66.4(8)
82.1(8)
94.2(7)
162.3(11)
114.5(9)
64.1(9)
79.9(8)
69.3(9)
37.1(8)
122.9(7)
148.5(8)
91.1(7)
78.0(9)
68.7(8)
36.6(8)
69.9(8)
40.2(9)
81.4(6)
82.0(6)
76.4(6)
95.7(8)
163.2(8)
119.7(7)
119.6(8)
155.9(8)
93.9(8)
36.5(7)
154.5(9)
96.5(7)
122.5(8)
78.8(9)
69.8(7)
157.1(11)
119.8(9)
94.1(7)

C(49)- $Ru(4)$ - $C(45)$	66.5(10)
C(50)-Ru(4)-C(45)	37.8(8)
C(46)-Ru(4)-C(45)	40.3(9)
N(10)-Ru(4)-C(47)	118.2(9)
O(8O)-Ru(4)-C(47)	100.9(8)
O(7O)-Ru(4)-C(47)	159.3(9)
C(49)-Ru(4)-C(47)	65.8(8)
C(50)-Ru(4)-C(47)	80.3(8)
C(46)-Ru(4)-C(47)	36.9(9)
C(45)-Ru(4)-C(47)	69.1(9)
N(10)-Ru(4)-C(48)	94.0(8)
O(8O)-Ru(4)-C(48)	125.6(8)
O(7O)-Ru(4)-C(48)	157.0(8)
C(49)-Ru(4)-C(48)	37.8(8)
C(50)-Ru(4)-C(48)	68.3(9)
C(46)-Ru(4)-C(48)	66.4(10)
C(45)-Ru(4)-C(48)	80.7(9)
C(47)-Ru(4)-C(48)	35.7(9)
C(2)-N(1)-C(1)	114.4(17)
C(2)-N(1)-Ru(2)	123.7(16)
C(1)-N(1)-Ru(2)	121.5(14)
C(6)-N(2)-C(5)	131(2)
C(11)-N(3)-C(7)	120(2)
C(13)-N(4)-C(12)	122(2)
C(17)-N(5)-C(16)	110.5(18)
C(17)-N(5)-Ru(3)	122.9(17)
C(16)-N(5)-Ru(3)	126.3(18)
C(18)-N(6)-C(19)	115.0(17)
C(18)-N(6)-Ru(1)	120.8(18)
C(19)-N(6)-Ru(1)	124.0(13)
C(23)-N(7)-C(22)	130.5(19)
C(28)-N(8)-C(24)	109(2)
C(29)-N(9)-C(30)	130(2)
C(33)-N(10)-C(34)	114.7(16)
C(33)-N(10)-Ru(4)	124.0(15)
C(34)-N(10)-Ru(4)	121.1(13)

C(3)-C(1)-N(1)	124(2)
N(1)-C(2)-C(4)	127(2)
C(1)-C(3)-C(5)	119(3)
C(5)-C(4)-C(2)	118(2)
C(4)-C(5)-N(2)	125(3)
C(4)-C(5)-C(3)	118(2)
N(2)-C(5)-C(3)	117(3)
N(2)-C(6)-O(1)	117(2)
N(2)-C(6)-C(7)	122(2)
O(1)-C(6)-C(7)	121(2)
C(6)-C(7)-N(3)	121(2)
C(6)-C(7)-C(8)	123(2)
N(3)-C(7)-C(8)	116(2)
C(9)-C(8)-C(7)	125(2)
C(8)-C(9)-C(10)	115(2)
C(11)-C(10)-C(9)	118(2)
N(3)-C(11)-C(10)	127(2)
N(3)-C(11)-C(12)	119(2)
C(10)-C(11)-C(12)	115(2)
O(2)-C(12)-N(4)	124(2)
O(2)-C(12)-C(11)	125(2)
N(4)-C(12)-C(11)	111(2)
C(14)-C(13)-N(4)	127(2)
C(14)-C(13)-C(15)	111(3)
N(4)-C(13)-C(15)	121(3)
C(13)-C(14)-C(16)	122(3)
C(17)-C(15)-C(13)	121(3)
N(5)-C(16)-C(14)	128(2)
N(5)-C(17)-C(15)	127(2)
N(6)-C(18)-C(20)	125(2)
N(6)-C(19)-C(21)	127.5(17)
C(18)-C(20)-C(22)	119(2)
C(22)-C(21)-C(19)	111(2)
C(20)-C(22)-C(21)	122(2)
C(20)-C(22)-N(7)	130(2)
C(21)-C(22)-N(7)	107(3)

O(3)-C(23)-N(7)	110(3)
O(3)-C(23)-C(24)	123(3)
N(7)-C(23)-C(24)	126.0(19)
N(8)-C(24)-C(25)	128(3)
N(8)-C(24)-C(23)	113(3)
C(25)-C(24)-C(23)	118(3)
C(26)-C(25)-C(24)	119(3)
C(25)-C(26)-C(27)	114(2)
C(28)-C(27)-C(26)	119(2)
N(8)-C(28)-C(27)	131(3)
N(8)-C(28)-C(29)	113(2)
C(27)-C(28)-C(29)	116(3)
O(4)-C(29)-N(9)	124(3)
O(4)-C(29)-C(28)	121(2)
N(9)-C(29)-C(28)	115(3)
C(32)-C(30)-C(31)	117(3)
C(32)-C(30)-N(9)	125(2)
C(31)-C(30)-N(9)	119(2)
C(30)-C(31)-C(33)	120(2)
C(30)-C(32)-C(34)	121(2)
N(10)-C(33)-C(31)	125(2)
N(10)-C(34)-C(32)	123.6(17)
C(40)-C(35)-C(36)	121.1(18)
C(40)-C(35)-Ru(3)	71.0(12)
C(36)-C(35)-Ru(3)	72.5(11)
C(37)-C(36)-C(35)	116(2)
C(37)-C(36)-Ru(3)	68.2(12)
C(35)-C(36)-Ru(3)	67.2(12)
C(36)-C(37)-C(38)	118.8(18)
C(36)-C(37)-C(41)	119(2)
C(38)-C(37)-C(41)	122(2)
C(36)-C(37)-Ru(3)	75.3(12)
C(38)-C(37)-Ru(3)	69.0(11)
C(41)-C(37)-Ru(3)	126.9(12)
C(39)-C(38)-C(37)	117.5(18)
C(39)-C(38)-Ru(3)	72.2(13)

C(37)-C(38)-Ru(3)	70.4(10)
C(40)-C(39)-C(38)	129(2)
C(40)-C(39)-Ru(3)	73.5(12)
C(38)-C(39)-Ru(3)	72.3(12)
C(39)-C(40)-C(35)	117(2)
C(39)-C(40)-C(42)	128(3)
C(35)-C(40)-C(42)	115(3)
C(39)-C(40)-Ru(3)	71.3(12)
C(35)-C(40)-Ru(3)	71.9(12)
C(42)-C(40)-Ru(3)	129.6(16)
C(43)-C(42)-C(40)	113(2)
C(43)-C(42)-C(44)	115(3)
C(40)-C(42)-C(44)	107(2)
C(50)-C(45)-C(46)	117(2)
C(50)-C(45)-C(51)	124(3)
C(46)-C(45)-C(51)	119(3)
C(50)-C(45)-Ru(4)	70.4(11)
C(46)-C(45)-Ru(4)	69.3(12)
C(51)-C(45)-Ru(4)	126.8(13)
C(47)-C(46)-C(45)	119(2)
C(47)-C(46)-Ru(4)	72.5(15)
C(45)-C(46)-Ru(4)	70.5(12)
C(48)-C(47)-C(46)	123(2)
C(48)-C(47)-Ru(4)	74.1(16)
C(46)-C(47)-Ru(4)	70.6(13)
C(47)-C(48)-C(49)	116(2)
C(47)-C(48)-C(52)	123(2)
C(49)-C(48)-C(52)	121(2)
C(47)-C(48)-Ru(4)	70.2(12)
C(49)-C(48)-Ru(4)	67.6(12)
C(52)-C(48)-Ru(4)	132.3(18)
C(50)-C(49)-C(48)	126(2)
C(50)-C(49)-Ru(4)	72.5(12)
C(48)-C(49)-Ru(4)	74.6(11)
C(49)-C(50)-C(45)	119(2)
C(49)-C(50)-Ru(4)	71.0(11)

C(45)-C(50)-Ru(4)	71.8(10)
C(53)-C(52)-C(48)	107(2)
C(53)-C(52)-C(54)	116(2)
C(48)-C(52)-C(54)	111(2)
C(56)-C(55)-C(60)	118(2)
C(56)-C(55)-C(61)	122(2)
C(60)-C(55)-C(61)	119(2)
C(56)-C(55)-Ru(1)	68.7(12)
C(60)-C(55)-Ru(1)	67.7(13)
C(61)-C(55)-Ru(1)	127.5(14)
C(55)-C(56)-C(57)	125(2)
C(55)-C(56)-Ru(1)	75.3(12)
C(57)-C(56)-Ru(1)	70.8(11)
C(58)-C(57)-C(56)	118(2)
C(58)-C(57)-Ru(1)	71.6(13)
C(56)-C(57)-Ru(1)	68.7(10)
C(59)-C(58)-C(57)	117(2)
C(59)-C(58)-C(62)	126(2)
C(57)-C(58)-C(62)	116(3)
C(59)-C(58)-Ru(1)	68.0(13)
C(57)-C(58)-Ru(1)	71.6(12)
C(62)-C(58)-Ru(1)	133.0(16)
C(58)-C(59)-C(60)	126(2)
C(58)-C(59)-Ru(1)	75.4(15)
C(60)-C(59)-Ru(1)	70.6(13)
C(55)-C(60)-C(59)	115(3)
C(55)-C(60)-Ru(1)	74.9(18)
C(59)-C(60)-Ru(1)	67.0(12)
C(58)-C(62)-C(64)	111.6(19)
C(58)-C(62)-C(63)	111(2)
C(64)-C(62)-C(63)	109(2)
C(66)-C(65)-C(70)	117(2)
C(66)-C(65)-C(71)	133(2)
C(70)-C(65)-C(71)	109(3)
C(66)-C(65)-Ru(2)	71.1(12)
C(70)-C(65)-Ru(2)	70.6(10)

C(71)-C(65)-Ru(2)	124.7(15)
C(67)-C(66)-C(65)	122(2)
C(67)-C(66)-Ru(2)	73.3(12)
C(65)-C(66)-Ru(2)	70.0(11)
C(66)-C(67)-C(68)	122(2)
C(66)-C(67)-Ru(2)	72.6(12)
C(68)-C(67)-Ru(2)	70.6(11)
C(67)-C(68)-C(69)	125(2)
C(67)-C(68)-C(72)	127(3)
C(69)-C(68)-C(72)	108(2)
C(67)-C(68)-Ru(2)	73.5(12)
C(69)-C(68)-Ru(2)	72.5(11)
C(72)-C(68)-Ru(2)	126.9(15)
C(68)-C(69)-C(70)	115.4(19)
C(68)-C(69)-Ru(2)	69.3(12)
C(70)-C(69)-Ru(2)	70.3(11)
C(69)-C(70)-C(65)	119(2)
C(69)-C(70)-Ru(2)	71.4(12)
C(65)-C(70)-Ru(2)	69.7(11)
C(73)-C(72)-C(74)	104.5(19)
C(73)-C(72)-C(68)	109.3(19)
C(74)-C(72)-C(68)	107.3(19)
O(3O)-C(1O)-O(1O)	124.9(18)
O(3O)-C(1O)-C(2O)	117(2)
O(10)-C(10)-C(2O)	117(2)
O(4O)-C(2O)-O(2O)	121(2)
O(4O)-C(2O)-C(1O)	122(2)
O(2O)-C(2O)-C(1O)	115.7(19)
O(8O)-C(3O)-O(6O)	130.3(19)
O(8O)-C(3O)-C(4O)	112(2)
O(6O)-C(3O)-C(4O)	117(2)
O(7O)-C(4O)-O(5O)	118(2)
O(7O)-C(4O)-C(3O)	125(2)
O(5O)-C(4O)-C(3O)	116.3(18)
C(10)-O(10)-Ru(2)	114.2(12)
C(2O)-O(2O)-Ru(2)	113.7(13)

C(10)-O(30)-Ru(1)	110.9(14)
C(2O)-O(4O)-Ru(1)	109.9(15)
C(4O)-O(5O)-Ru(3)	112.7(13)
C(3O)-O(6O)-Ru(3)	114.7(13)
C(4O)-O(7O)-Ru(4)	107.4(14)
C(3O)-O(8O)-Ru(4)	118.6(14)
O(2F)-S(1F)-O(3F)	119.3(12)
O(2F)-S(1F)-O(1F)	109.8(13)
O(3F)-S(1F)-O(1F)	115.4(11)
O(2F)-S(1F)-C(1F)	104.1(14)
O(3F)-S(1F)-C(1F)	115.9(13)
O(1F)-S(1F)-C(1F)	87.5(19)
F(1F)-C(1F)-F(2F)	155(7)
F(1F)-C(1F)-F(3F)	112(5)
F(2F)-C(1F)-F(3F)	83(2)
F(1F)-C(1F)-S(1F)	110(4)
F(2F)-C(1F)-S(1F)	91(4)
F(3F)-C(1F)-S(1F)	85(3)
O(5F)-S(2F)-O(6F)	116.5(9)
O(5F)-S(2F)-O(4F)	115.8(10)
O(6F)-S(2F)-O(4F)	111.2(8)
O(5F)-S(2F)-C(2F)	106.9(12)
O(6F)-S(2F)-C(2F)	104.6(12)
O(4F)-S(2F)-C(2F)	99.5(14)
F(5F)-C(2F)-F(4F)	106(2)
F(5F)-C(2F)-F(6F)	106(2)
F(4F)-C(2F)-F(6F)	107(2)
F(5F)-C(2F)-S(2F)	113(2)
F(4F)-C(2F)-S(2F)	118(2)
F(6F)-C(2F)-S(2F)	106.9(19)
O(7F)-S(3F)-O(9F)	113.1(11)
O(7F)-S(3F)-O(8F)	109.2(14)
O(9F)-S(3F)-O(8F)	119.5(13)
O(7F)-S(3F)-C(3F)	96.1(16)
O(9F)-S(3F)-C(3F)	107.0(12)
O(8F)-S(3F)-C(3F)	109.3(15)

F(7F)-C(3F)-F(9F)	115(3)
F(7F)-C(3F)-F(8F)	103(2)
F(9F)-C(3F)-F(8F)	94(3)
F(7F)-C(3F)-S(3F)	119(2)
F(9F)-C(3F)-S(3F)	116.4(18)
F(8F)-C(3F)-S(3F)	103(2)

Symmetry transformations used to generate equivalent atoms: