Supporting Information for:

Cyano-Bridged Terbium(III)–Chromium(III) Bimetallic Quasi-One-Dimensional Assembly Exhibiting Long-Range Magnetic Ordering

Yang Guo, Gong-Feng Xu, Chao Wang, Ting-Ting Cao, Jinkui Tang,* Zhan-Quan Liu, Yue Ma,* Shi-Ping Yan, Peng Cheng, Dai-Zheng Liao

Figure S1. Weak interactions (O–H…N) between the 1D chains of **1** leading to 2D hydrogen-bonded network along *ab* plane.

Figure S2. Weak interactions (O–H···N and O–H···O) between the 1D chains of **1** leading to 2D hydrogen-bonded network along bc plane.

Figure S3. Magnetization versus magnetic field at 2 K for 1.

O(1)-Tb(1)	2,363(3)	O(2)-Th(1)	2,376(4)
O(3)-Tb(1)	2.353(4)	O(4)-Tb(1)	2.340(3)
O(5)-Tb(1)	2.343(3)	O(6)-Tb(1)	2.400(4)
N(6)-Tb(1)#1	2.515(4)	Tb(1)-N(6)#2	2.515(4)
N(1)-Tb(1)	2.498(4)		
C(1)-Cr(1)	2.084(4)	C(2)-Cr(1)	2.082(5)
C(3)-Cr(1)	2.072(4)	C(4)-Cr(1)	2.064(5)
C(5)-Cr(1)	2.071(5)	C(6)-Cr(1)	2.098(4)
O(1)-Tb(1)-N(1)	144.64(12)	O(2)-Tb(1)-N(1)	115.43(14)
O(3)-Tb(1)-N(1)	72.72(14)	O(4)-Tb(1)-N(1)	74.40(12)
O(5)-Tb(1)-N(1)	138.85(11)	O(6)-Tb(1)-N(1)	81.72(14)
O(1)-Tb(1)-N(6)#2	78.35(12)	O(2)-Tb(1)-N(6)#2	71.62(13)
O(3)-Tb(1)-N(6)#2	111.98(15)	O(4)-Tb(1)-N(6)#2	141.53(12)
O(5)-Tb(1)-N(6)#2	144.73(12)	O(6)-Tb(1)-N(6)#2	82.33(13)
O(1)-Tb(1)-O(2)	76.69(13)	O(1)-Tb(1)-O(6)	71.94(13)
O(2)-Tb(1)-O(6)	142.55(13)	O(3)-Tb(1)-O(6)	145.48(13)
O(3)-Tb(1)-O(1)	140.10(13)	O(3)-Tb(1)-O(2)	71.14(14)
O(4)-Tb(1)-O(1)	116.39(12)	O(4)-Tb(1)-O(2)	144.02(13)
O(4)-Tb(1)-O(5)	71.74(12)	O(4)-Tb(1)-O(6)	70.64(13)
O(4)-Tb(1)-O(3)	80.25(14)	O(5)-Tb(1)-O(3)	79.09(15)
O(5)-Tb(1)-O(1)	73.36(12)	O(5)-Tb(1)-O(2)	81.62(15)
O(5)-Tb(1)-O(6)	107.79(16)	N(1)-Tb(1)-N(6)#2	75.05(12)
C(1)-N(1)-Tb(1)	159.5(3)	C(6)-N(6)-Tb(1)#1	163.4(3)
N(1)-C(1)-Cr(1)	174.7(4)	N(2)-C(2)-Cr(1)	174.6(5)
N(3)-C(3)-Cr(1)	176.5(4)	N(4)-C(4)-Cr(1)	178.6(5)
N(5)-C(5)-Cr(1)	171.8(5)	N(6)-C(6)-Cr(1)	170.9(4)
C(1)-Cr(1)-C(6)	94.29(16)	C(5)-Cr(1)-C(3)	91.57(19)
C(2)-Cr(1)-C(1)	84.98(19)	C(2)-Cr(1)-C(6)	92.60(18)
C(3)-Cr(1)-C(2)	90.71(19)	C(3)-Cr(1)-C(6)	88.99(16)
C(4)-Cr(1)-C(1)	89.29(17)	C(4)-Cr(1)-C(2)	91.9(2)
C(4)-Cr(1)-C(3)	87.77(18)	C(4)-Cr(1)-C(5)	92.83(19)
C(5)-Cr(1)-C(1)	92.99(19)	C(5)-Cr(1)-C(6)	82.75(18)

Table S1. S	Selected Bond	Lengths (Å)	and Angles	(deg) for 1	L ^a .
-------------	---------------	-------------	------------	-------------	------------------

a. Symmetry transformations used to generate equivalent atoms: #1 -x+2, y-1/2, -z+3/2; #2 -x+2, y+1/2, -z+3/2.

D–H···A	d(D–H)	$d(H \cdots A)$	$d(D \cdots A)$	<(DHA)
O5–H5A…N3#3	0.848	1.926	2.772	174.93
O5–H5B…N4#1	0.849	1.916	2.763	175.28
O6–H6A…O7#5	0.848	2.047	2.885	169.79
O6–H6B…O7#4	0.851	1.973	2.811	167.86
O7–H7A…N5#3	0.851	2.055	2.907	179.25
O7−H7B…N2#6	0.846	2.036	2.875	171.38

Table S2. Interatomic Distances and Angles for the Hydrogen Bonds in 1 (Å and deg)^b.

b. Symmetry transformations used to generate equivalent atoms: #1 -x+2, y-1/2, -z+3/2; #2 -x+2, y+1/2, -z+3/2; #3 x-1, y, z; #4 -x+1, y+1/2, -z+3/2; #5 x+1, -y+3/2, z+1/2; #6 x-1, -y+3/2, z-1/2.