Supporting Information

The oxidative degradation of dibenzoazepine derivatives by cerium(IV) complexes in acidic sulfate media.

Joanna Wiśniewska^{1,2}*, Grzegorz Wrzeszcz¹, Marzanna Kurzawa¹ and Rudi van Eldik²

¹Department of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland

²Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany

Table S1. Rate constants as a function of temperature for the electron-transfer reaction between dibenzoazepine derivatives and cerium(IV) complexes, as well as for the second and third steps of the degradation of TCA (k_{obs}). Experimental conditions: $[Ce^{IV}] = 5 \times 10^{-5}$ M, $[TCA] = 5 \times 10^{-4}$ M, $[H_2SO_4] = 1.0$ M, $[H^+] = 1.2$ M, I = 1.4 M (H^+ , HSO_4^- , SO_4^{-2-}), T = 278 K.

		I step	II step	III step
Temp. (K)	[TCA] (M)	$k_{\rm obs}({\rm s}^{-1})$	$k_{\rm obs}$ (s ⁻¹)	$k_{\rm obs}$ (s ⁻¹)
283	0.0005	7.09	0.41	0.04
	0.001	13.4	0.54	0.05
	0.002	22.1	0.94	0.13
	0.003	34.2	1.59	0.25
	0.004		2.60	0.44
	0.005		3.64	0.64

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2011

288	0.0005	9.46	0.56	0.05
	0.001	18.7	0.86	0.09
	0.002	30.2	1.42	0.18
	0.003	45.7	2.18	0.31
	0.004		3.35	0.54
	0.005		5.02	0.92
293	0.0005	11.9	0.89	0.09
	0.001	21.4	1.38	0.15
	0.002	44.0	2.22	0.29
	0.003	61.4	3.73	0.50
	0.004		5.21	0.83
	0.005		6.97	1.30
298	0.0005	14.16	0.96	0.04
	0.001	24.4	1.27	0.11
	0.002	49.6	2.65	0.29
	0.003		5.21	0.63
	0.004		8.18	1.15
	0.005		10.7	1.62

Table S2. Rate constants as a function of pressure for the electron-transfer reaction between dibenzoazepine derivatives and cerium(IV) complexes, as well as for the second and third steps of the degradation of TCA (k_{obs}). Experimental conditions: $[Ce^{IV}] = 5 \times 10^{-5}$ M, $[TCA] = 5 \times 10^{-4}$ M, $[H_2SO_4] = 1.0$ M, $[H^+] = 1.2$ M, I = 1.4 M (H^+ , HSO_4^- , SO_4^{2-}), T = 278 K.

	I step	II step	III step			
Pressure (MPa)	$k_{\rm obs}~({\rm s}^{-1})$	$k_{\rm obs} ({\rm s}^{-1})^{{\rm a}({\rm b})}$	$k_{\rm obs} ({\rm s}^{-1})^{a(b)}$			
10	4.45	4.98 (8.76)	0.76 (1.50)			
50	5.24	5.43 (10.5)	0.83 (1.91)			
90	6.28	6.06 (12.8)	0.92 (2.41)			
130	7.53	6.54 (15.2)	1.02 (3.17)			
^a [TCA] = 3×10^{-3} M, T = 298 K, ^b [TCA] = 5×10^{-3} M, T = 298 K.						

Figure S1. Plot of k_{obs} versus [HSO₄⁻ + SO₄²⁻] for the electron-transfer reaction between imipramine and cerium(IV). Inset: (A): the second reaction step, (B): the third reaction step. Experimental conditions: [Ce^{IV}] = 5 × 10⁻⁵ M, [TCA] = 1 × 10⁻³ M, [H₂SO₄] = 1.0 M, [Na₂SO₄] = 0 - 1.0 M, $I \neq \text{const}, T = 288 \text{ K}.$

Figure S2. Eyring plot of $\ln(k_1/T)$ versus 1/T for the electron-transfer reaction between desipramine and cerium(IV). Experimental conditions: $[Ce^{IV}] = 5 \times 10^{-5}$ M, $[TCA] = (0.5 - 3) \times 10^{-3}$ M, $[H_2SO_4] = 1.0$ M, $[H^+] = 1.2$ M, I = 1.4 M $(H^+, HSO_4^-, SO_4^{-2-})$, T = 283 - 298 K, $\lambda = 630$ nm.

Figure S3. Plot of $\ln(k_{obs})$ versus pressure for the second degradation step of imipramine. Experimental conditions: $[Ce^{IV}] = 5 \times 10^{-5} \text{ M}$, $[H_2SO_4] = 1.0 \text{ M}$, $[H^+] = 1.2 \text{ M}$, T = 298 K, $\lambda = 630 \text{ nm}$, (A): $[TCA] = 3 \times 10^{-3} \text{ M}$, (B): $[TCA] = 5 \times 10^{-3} \text{ M}$.

Figure S4. Plot of $\ln(k_{obs})$ versus pressure for the third degradation step of imipramine. Experimental conditions: $[Ce^{IV}] = 5 \times 10^{-5} \text{ M}$, $[H_2SO_4] = 1.0 \text{ M}$, $[H^+] = 1.2 \text{ M}$, T = 298 K, $\lambda = 630 \text{ nm}$, (A): $[TCA] = 3 \times 10^{-3} \text{ M}$, (B): $[TCA] = 5 \times 10^{-3} \text{ M}$.