Silanetriols in the gas phase: single molecules vs. hydrogenbonded dimers

Stefan Spirk, Raphael J. F. Berger, Christian G. Reuter, Rudolf Pietschnig, Norbert W. Mitzel*

Experimental

Silanetriol **1** was synthesized according to a published literature procedure.¹ The purity of the sample was checked by ¹H, ¹³C and ²⁹Si-NMR spectroscopy prior to gas electron diffraction. The electron diffraction intensities were recorded with a modified Balzers Eldigraph KD-G2 using an electron acceleration voltage of 60 kV.² The data were recorded at nozzle-to-plate distances of 250.0 and 500.0 mm, respectively. For each nozzle to plate distance, the electron wavelength was calibrated by reference measurements of benzene at room temperature. The sample was held at 150±5°C during the experiment while the nozzle was kept at 163±5°C The primary beam current was about 380 nA. During data acquisition the pressure rose from $1 \cdot 10^{-6}$ mbar (background pressure) to $1 \cdot 10^{-5}$ mbar. The optimal exposure time was 30 s. The imaging plates (Fuji BAS-IP MP 2025) were analyzed by established procedures using the program XPIMAG. The averaged molecular intensities in the *s* ranges of 3.0 to 12.8 and 6.0 to 28.0 Å are presented in Fig. S1. Table S1 gives further experimental details about the used datasets. For the structure refinement, the program Ed@ed version 2.4³ and the scattering factors of Ross et al. were used.⁴

Computations

Calculations were carried out with the TURBOMOLE program package (RI-MP2), version 5.10^5 and Gaussian03⁶ (B3LYP/6-31g*, HF/6-31g*, MP2/6-31g*, B3LYP/6-31++g**). In case of Turbomole, the calculation for the computational level termed MP2, was performed using the RI-MP2 routine as it is implemented in the ricc2 program deck. TURBOMOLE's def2-TZVPP basis set was used throughout in connection with the corresponding auxiliary basis sets for the RI fit. For the calculations of dimers, the basis set 6-31++g** was chosen. The choice of this basis set was based on the consideration that in order to obtain reliable properties for hydrogen-bonded systems, it is essential to employ a basis set that possesses sufficient diffuseness and angular flexibility. The suitability of this basis set for the calculation of hydrogen bonded complexes has been demonstrated by Dhkissi and coworkers.⁷ The program SHRINK was used to compute anharmonic distance corrections and perpendicular curvilinear distance corrections *k*, which in turn were applied in the refinement to yield a r_h type structure.⁸

Fig. S1. Experimental and difference (experimental minus theoretical) molecular intensity curves for **1** at nozzle-to-plate distances of 500.0 mm and 250.0 mm, respectively.

Datase t	R _g %	R _d %	k	e.s.d	Corr. Parameter	Δs (nm ¹)	s _{min} (nm⁻¹)	<i>sw1</i> (nm ⁻¹)	<i>sw2</i> (nm ⁻¹)	s _{max} (nm⁻¹)	<i>d</i> (mm)	λ (nm)
1	5.09	5.13	0.6931	0.0075	-0.0066	2.00	60.00	80.00	240.0	280.0	250.0	0.04814
2	5.68	3.65	0.7816	0.0081	0.3686	1.00	30.00	40.00	112.0	120.0	500.0	0.04815

Table S1. Summary of the experimental details.

	GED $/r_{hl}$	B3LYP 6-31g*	HF 6-31g*	MP2 6-31g*	B3LYP 6-31++g**	RIMP2 TZVPP	XRD^1	XRD ⁹	XRD ¹⁰
Si-C	1.879(3)	1.881	1.877	1.865	1.884	1.864	1.865(6)	1.863(2)	1.851(4)- 1.871(4)
Si-O	1.640(1)	1.667	1.645	1.670	1.688	1.651	1.613(3)- 1.636(4)	1.635(1), 1.640(1)	1.617(2)- 1.638(2)
C-C	1.540(2)	1.544	1.541	1.534	1.546	1.532	1.507(6)- 1.519(8)	1.536(2), 1.539(3)	1.521(5)- 1.534(5)
C-Si-O	111.2(2)	110.5	110.7	110.2	110.3	109.7	109.8(2)- 112.3(2)	110.8(5), 111.0(8)	110.2(1)- 111.2(2)
C-C-Si	110.5(3)	109.3	109.6	109.3	109.4	109.7	109.0(4)- 109.9(4)	109.4(1), 109.8(1)	109.1(2)- 110.5(3)
С-Н	1.118(2)	1.090	1.086	1.095	1.096	1.090	0.96	1.01(1)	0.98
О-Н	0.940(4)	0.968	0.947	0.971	0.964	0.958	0.92	0.85(2)- 0.86(2)	0.84(3)
Si-O-H	112.9(8)	113.6	116.7	113.6	116.66	115.6	114- 120	120(2)- 126(2)	117.7(7)- 121.7(7)
C-Si-O-H	122.9(8)	123.4	120.8	123.8	124.7	124.2	-63- -112	-144(2)- 74(3)	-69(4)- -96(4)
С-С-Н	111.4(5)	111.5	110.3	111.4	111.8	109.6	109.5	109.9(1)- 113.0(1)	109.5
C-C-C	108.4(3)	109.6	109.3	109.6	109.5	109.3	106.8(5)- 111.7(4)	109.5(1), 109.8(2)	109.4(3)- 110.7(3)
O-Si-O	107.7(3)	108.4	108.2	108.2	108.6	109.2	105.7(2)- 110.5(2)	108.3(5), 111.0(8)	107.0(1)- 109.6(1)

Table S2. Comparison of computed and experimental (GED and XRD) data obtained for **1**. Bond lengths in Å and angles in °.

Fig.S2. VISTA-plot of the Si-O distances in the solid state for silanetriols obtained by X-ray crystallography.

Table S3. Independent parameters (p_n) and dependent parameters (d_n) used for the r_{h1} refinement of **1**.

	Parameter	Value	Description
p_1	CSi	1.879(3)	Si-C distance
<i>p</i> ₂	OSi	1.640(1)	Si-O distance
p ₃	C1C2	1.540(2)	C-C distance
p_4	wCSiO	111.2(2)	C _q -Si-O-angle
p_5	wC2C1Si	110.5(3)	C_{Me} - C_{q} -Si-angle
p_6	C2H	1.118(3)	C-H distance
p 7	rOH	0.940(4)	O-H distance
p_8	wiC3	109.6(9)	Defines indirectly the C_q - C_{Me} - H_{Me} angle
p_9	wiSiO	112.9(8)	Si-O-H angle
p_{10}	wiSiO2	122.9(8)	C _q -Si-O-H dihedral

Dependent

parameters

	Parameter	Value	
d_1	cch	111.4(5)	C_q - C_{Me} - H_{Me} angle
d ₂	ссс	108.4(3)	$C_{Me}-C_{q}-C_{Me}$ - angle
<i>d</i> ₃	osio	107.7(3)	O-Si-Oʻ – angle

Table S5. Amplitudes of vibration for 1.

Amplitudes of vibration

	Amplitude	d (r _a)	e.s.d.	и	e.s.d.	k	Area
<i>u</i> 183	H(16)-O(19)	.9342	.0042	.0864	Tied to <i>u</i> 178	.0019	12.5
u172	H(14)-O(17)	.9362	.0042	.0750	Tied to <i>u</i> 178	.0019	12.5
u178	H(15)-O(18)	.9366	.0042	.0724	.0044	.0019	12.5
u42	C(3)-H(8)	1.1154	.0025	.0851	Tied to u46	.0038	7.9
<i>u</i> 59	C(4)-H(9)	1.1154	.0025	.0851	Tied to u46	.0038	7.9
u22	C(2)-H(5)	1.1154	.0025	.0851	Tied to u46	.0038	7.9
u44	C(3)-H(10)	1.1155	.0025	.0844	Tied to u46	.0038	7.9
u24	C(2)-H(7)	1.1155	.0025	.0844	Tied to u46	.0038	7.9
<i>u</i> 46	C(3)-H(12)	1.1155	.0025	.0844	.0031	.0038	7.9
<i>u</i> 63	C(4)-H(13)	1.1155	.0025	.0844	Tied to u46	.0038	7.9
<i>u</i> 61	C(4)-H(11)	1.1155	.0025	.0844	Tied to u46	.0038	7.9
u23	C(2)-H(6)	1.1155	.0025	.0844	Tied to u46	.0038	7.9
<i>u</i> 1	C(1)-C(2)	1.5407	.0021	.0563	.0035	.0028	34.2
u2	C(1)-C(3)	1.5407	.0021	.0562	Tied to u1	.0028	34.2
иЗ	C(1)-C(4)	1.5407	.0021	.0562	Tied to <i>u</i> 1	.0028	34.2
<i>u</i> 190	O(19)-Si(20)	1.6413	.0009	.0389	Tied to <i>u</i> 187	.0022	100.0
<i>u</i> 189	O(18)-Si(20)	1.6413	.0009	.0389	Tied to <i>u</i> 187	.0022	100.0
u187	O(17)-Si(20)	1.6413	.0009	.0385	.0014	.0022	100.0
<i>u</i> 86	H(6)H(7)	1.7973	.0091	.1300	Tied to <i>u</i> 116	.0033	.8
u72	H(5)H(7)	1.7973	.0091	.1306	Tied to <i>u</i> 116	.0034	.8
u71	H(5)H(6)	1.7973	.0091	.1306	Tied to <i>u</i> 116	.0034	.8
<i>u</i> 128	H(9)H(13)	1.7973	.0091	.1305	Tied to <i>u</i> 116	.0034	.8
<i>u</i> 114	H(8)H(10)	1.7973	.0091	.1305	Tied to <i>u</i> 116	.0034	.8
u137	H(10)H(12)	1.7974	.0091	.1300	Tied to <i>u</i> 116	.0034	.8
u147	H(11)H(13)	1.7974	.0091	.1300	Tied to <i>u</i> 116	.0034	.8
<i>u</i> 116	H(8)H(12)	1.7974	.0091	.1305	.0105	.0035	.8
<i>u</i> 126	H(9)H(11)	1.7974	.0091	.1305	Tied to <i>u</i> 116	.0035	.8
<i>u</i> 19	C(1)-Si(20)	1.8788	.0026	.0507	.0031	.0009	65.5
<i>u</i> 184	H(16)Si(20)	2.1844	.0094	.1422	Tied to <i>u</i> 175	.0091	9.4
<i>u</i> 180	H(15)Si(20)	2.1859	.0094	.1211	Tied to <i>u</i> 175	.0080	9.4
<i>u</i> 5	C(1)H(6)	2.1991	.0065	.0872	Tied to u12	0058	4.0
<i>u</i> 6	C(1)H(7)	2.1991	.0065	.0871	Tied to u12	0058	4.0
<i>u</i> 12	C(1)H(13)	2.1992	.0065	.0869	.0041	0058	4.0
<i>u</i> 11	C(1)H(12)	2.1992	.0065	.0868	Tied to u12	0058	4.0
<i>u</i> 10	C(1)H(11)	2.1992	.0065	.0868	Tied to u12	0058	4.0
<i>u</i> 9	C(1)H(10)	2.1992	.0065	.0867	Tied to <i>u</i> 12	0058	4.0
u7	C(1)H(8)	2.1994	.0065	.0871	Tied to u12	0055	4.0
<i>u</i> 8	C(1)H(9)	2.1994	.0065	.0871	Tied to u12	0055	4.0
<i>u</i> 4	C(1)H(5)	2.1996	.0065	.0870	Tied to u12	0054	4.0
u175	H(14)Si(20)	2.2932	.0094	.1536	.0099	.1194	8.9
<i>u</i> 38	C(3)C(4)	2.4952	.0051	.0927	Tied to <i>u</i> 20	.0006	21.1
<i>u</i> 20	C(2)C(3)	2.4953	.0051	.0930	.0052	.0007	21.1
u21	C(2)C(4)	2.4954	.0051	.0931	Tied to <i>u</i> 20	.0008	21.1

u113	H(8)H(9)	2.5169	.0254	.2891	Tied to <i>u</i> 91	.0229	.6
u73	H(5)H(8)	2.5177	.0254	.2869	Tied to <i>u</i> 91	.0232	.6
u74	H(5)H(9)	2.5178	.0254	.2866	Tied to <i>u</i> 91	.0233	.6
u179	H(15)O(19)	2.5483	.0153	.4753	Tied to <i>u</i> 181	.0369	4.6
<i>u</i> 138	H(10)H(13)	2.5676	.0188	.2759	Tied to <i>u</i> 91	.0236	.6
<i>u</i> 103	H(7)H(11)	2.5687	.0188	.2745	Tied to <i>u</i> 91	.0244	.6
<i>u</i> 91	H(6)H(12)	2.5688	.0188	.2743	.0219	.0244	.6
u173	H(14)O(18)	2.6029	.0158	.6617	Tied to <i>u</i> 181	.1731	4.5
<i>u</i> 181	H(16)O(17)	2.6190	.0153	.4638	.0372	.1035	4.5
<i>u</i> 186	O(17)O(19)	2.6435	.0040	.0876	.0048	0016	35.5
<i>u</i> 185	O(17)O(18)	2.6436	.0040	.0875	Tied to <i>u</i> 186	0015	35.5
<i>u</i> 188	O(18)O(19)	2.6462	.0040	.0853	Tied to <i>u</i> 186	.0010	35.4
<i>u</i> 58	C(4)H(8)	2.7318	.0128	.2060	Tied to u29	0028	3.2
<i>u</i> 43	C(3)H(9)	2.7318	.0128	.2060	Tied to u29	0028	3.2
u39	C(3)H(5)	2.7319	.0128	.2056	Tied to u29	0028	3.2
<i>u</i> 55	C(4)H(5)	2.7320	.0128	.2055	Tied to u29	0027	3.2
u25	C(2)H(8)	2.7326	.0128	.2040	Tied to u29	0023	3.2
u26	C(2)H(9)	2.7326	.0128	.2039	Tied to u29	0023	3.2
u47	C(3)H(13)	2.7543	.0094	.2005	Tied to u29	0023	3.2
<i>u</i> 60	C(4)H(10)	2.7546	.0094	.1999	Tied to u29	0021	3.2
u28	C(2)H(11)	2.7547	.0094	.2003	Tied to u29	0020	3.2
u29	C(2)H(12)	2.7547	.0094	.1999	.0137	0020	3.2
<i>u</i> 40	C(3)H(6)	2.7551	.0094	.1984	Tied to u29	0018	3.2
u57	C(4)H(7)	2.7552	.0094	.1984	Tied to u29	0017	3.2
u37	C(2)Si(20)	2.8114	.0047	.0891	.0035	0021	43.8
<i>u</i> 54	C(3)Si(20)	2.8117	.0047	.0879	Tied to u37	0019	43.8
u70	C(4)Si(20)	2.8117	.0047	.0879	Tied to u37	0019	43.8
u17	C(1)O(18)	2.8973	.0048	.1441	Tied to <i>u</i> 16	0028	24.3
<i>u</i> 18	C(1)O(19)	2.8974	.0048	.1438	Tied to <i>u</i> 16	0027	24.3
<i>u</i> 16	C(1)O(17)	2.9011	.0048	.1177	.0075	0013	24.2
<i>u</i> 139	H(10)H(14)	2.9610	.0136	.6502	(fixed)	1985	.5
<i>u</i> 94	H(6)H(15)	2.9648	.0135	.6059	(fixed)	2116	.5
u111	H(7)O(19)	2.9659	.0090	.4256	Tied to <i>u</i> 153	.0538	4.0
u97	H(6)O(18)	2.9668	.0090	.4254	Tied to <i>u</i> 153	.0547	4.0
u166	H(13)O(17)	2.9801	.0090	.3886	Tied to <i>u</i> 153	.0579	3.9
u142	H(10)O(17)	2.9813	.0090	.3856	Tied to <i>u</i> 153	.0583	3.9
<i>u</i> 160	H(12)O(18)	2.9877	.0090	.3776	Tied to <i>u</i> 153	.0627	3.9
u153	H(11)O(19)	2.9898	.0090	.3752	.0297	.0641	3.9
u112	H(7)Si(20)	3.0062	.0084	.2039	Tied to <i>u</i> 99	0036	6.8
u99	H(6)Si(20)	3.0063	.0084	.2036	.0149	0035	6.8
<i>u</i> 162	H(12)Si(20)	3.0068	.0084	.2015	Tied to <i>u</i> 99	0033	6.8
u154	H(11)Si(20)	3.0068	.0084	.2013	Tied to u99	0033	6.8
u169	H(13)Si(20)	3.0072	.0084	.2003	Tied to <i>u</i> 99	0031	6.8
u145	H(10)Si(20)	3.0073	.0084	.2004	Tied to u99	0030	6.8
<i>u</i> 150	H(11)H(16)	3.0352	.0134	.5390	(fixed)	1645	.5
u117	H(8)H(13)	3.0761	.0134	.3060	(fixed)	0173	.5
u125	H(9)H(10)	3.0763	.0134	.3058	(fixed)	0172	.5

u77	H(5)H(12)	3.0763	.0134	.3065	(fixed)	0170	.5
u76	H(5)H(11)	3.0764	.0134	.3063	(fixed)	0170	.5
<i>u</i> 101	H(7)H(9)	3.0778	.0134	.3028	(fixed)	0163	.5
u87	H(6)H(8)	3.0778	.0134	.3026	(fixed)	0163	.5
u171	H(14)H(16)	3.1570	.0243	1.0880	(fixed)	.3255	.5
u170	H(14)H(15)	3.1608	.0243	1.0822	(fixed)	.3253	.5
u182	H(16)O(18)	3.2241	.0114	.4795	Tied to <i>u</i> 174	.0385	3.6
u177	H(15)O(17)	3.2937	.0113	.4589	Tied to <i>u</i> 174	.1022	3.6
u174	H(14)O(19)	3.2984	.0116	.6574	.0535	.1749	3.6
u36	C(2)O(19)	3.3413	.0044	.2888	Tied to <i>u</i> 67	.0063	21.1
u35	C(2)O(18)	3.3415	.0044	.2890	Tied to <i>u</i> 67	.0066	21.1
u67	C(4)O(17)	3.3467	.0044	.2647	.0083	.0078	21.0
u51	C(3)O(17)	3.3475	.0044	.2626	Tied to <i>u</i> 67	.0083	21.0
u52	C(3)O(18)	3.3512	.0044	.2571	Tied to <i>u</i> 67	.0111	21.0
u69	C(4)O(19)	3.3522	.0044	.2556	Tied to <i>u</i> 67	.0119	21.0
u14	C(1)H(15)	3.3684	.0097	.2448	Tied to u27	1758	2.6
u15	C(1)H(16)	3.3746	.0096	.1838	Tied to u27	1769	2.6
u176	H(15)H(16)	3.3785	.0228	.6911	(fixed)	.3264	.4
<i>u</i> 13	C(1)H(14)	3.4098	.0096	.1777	Tied to u27	1424	2.6
u32	C(2)H(15)	3.4635	.0117	.4548	.0364	2325	2.5
<i>u</i> 62	C(4)H(12)	3.4659	.0063	.1265	Tied to <i>u</i> 27	0201	2.5
u45	C(3)H(11)	3.4659	.0063	.1265	Tied to <i>u</i> 27	0201	2.5
u30	C(2)H(13)	3.4660	.0063	.1269	Tied to <i>u</i> 27	0200	2.5
u27	C(2)H(10)	3.4660	.0063	.1266	.0077	0200	2.5
u56	C(4)H(6)	3.4661	.0063	.1266	Tied to <i>u</i> 27	0199	2.5
u41	C(3)H(7)	3.4661	.0063	.1265	Tied to <i>u</i> 27	0199	2.5
u48	C(3)H(14)	3.4739	.0117	.5013	Tied to <i>u</i> 32	2103	2.5
u163	H(13)H(14)	3.5025	.0112	.6620	(fixed)	1977	.4
u156	H(12)H(14)	3.5034	.0127	.7709	(fixed)	1901	.4
<i>u</i> 66	C(4)H(16)	3.5108	.0116	.4119	Tied to u32	1951	2.5
u108	H(7)H(16)	3.5166	.0112	.5674	(fixed)	2141	.4
u107	H(7)H(15)	3.5166	.0125	.6219	(fixed)	2309	.4
u157	H(12)H(15)	3.5653	.0112	.5767	(fixed)	1626	.4
u165	H(13)H(16)	3.5757	.0125	.6317	(fixed)	1686	.4
<i>u</i> 151	H(11)O(17)	3.6190	.0052	.4284	.0327	0210	3.2
<i>u</i> 110	H(7)O(18)	3.6205	.0052	.4189	Tied to <i>u</i> 151	0217	3.2
u159	H(12)O(17)	3.6205	.0052	.4260	Tied to <i>u</i> 151	0200	3.2
<i>u</i> 98	H(6)O(19)	3.6207	.0052	.4159	Tied to <i>u</i> 151	0221	3.2
u143	H(10)O(18)	3.6281	.0052	.4081	Tied to U151	0165	3.2
<i>u</i> 168	H(13)U(19)	3.6288	.0052	.4080	Thea to u_{151}	0158	3.2
u115	H(8)H(11)	3.7436	.0148	.1998	(fixed)	0291	.4
u127	H(9)H(12)	3.7430	.0148	.1997	(fixed)	0291	.4
u/5	п(5)H(1U)	3./43/	.0148	.1990	(lixed)	0291	.4
u/8	п(5)H(13)	3./43/	.0148	1085	(lixed)	0291	.4
<i>u</i> 100	Π(/)Η(δ)	3.7443	.0148	1001	(lixed)	0285	.4
U88	п(б)Н(У)	3.7444	.0148	1020	(IIXEO) (fixed)	0285	.4
<i>u</i> 155	H(12)H(13)	3.7721	.0110	.1938	(fixed)	0281	.4

<i>u</i> 136	H(10)H(11)	3.7721	.0110	.1935	(fixed)	0281	.4
<i>u</i> 90	H(6)H(11)	3.7724	.0110	.1931	(fixed)	0279	.4
<i>u</i> 104	H(7)H(12)	3.7724	.0110	.1928	(fixed)	0279	.4
u89	H(6)H(10)	3.7726	.0110	.1926	(fixed)	0277	.4
<i>u</i> 105	H(7)H(13)	3.7726	.0110	.1925	(fixed)	0277	.4
u85	H(5)Si(20)	3.7963	.0049	.1177	Tied to <i>u</i> 124	0262	5.4
<i>u</i> 135	H(9)Si(20)	3.7964	.0049	.1173	Tied to <i>u</i> 124	0261	5.4
<i>u</i> 124	H(8)Si(20)	3.7964	.0049	.1172	.0078	0261	5.4
<i>u</i> 33	C(2)H(16)	3.9344	.0072	.4055	Tied to <i>u</i> 49	2342	2.2
<i>u</i> 64	C(4)H(14)	3.9387	.0072	.5005	Tied to <i>u</i> 49	2095	2.2
<i>u</i> 49	C(3)H(15)	3.9690	.0072	.4393	.0356	1929	2.2
<i>u</i> 68	C(4)O(18)	4.1899	.0026	.1041	Tied to <i>u</i> 34	0387	16.8
<i>u</i> 53	C(3)O(19)	4.1903	.0026	.1035	Tied to <i>u</i> 34	0383	16.8
u34	C(2)O(17)	4.1910	.0026	.0904	.0032	0382	16.8
<i>u</i> 148	H(11)H(14)	4.2823	.0064	.7749	(fixed)	1887	.3
<i>u</i> 95	H(6)H(16)	4.2915	.0063	.5998	(fixed)	2318	.3
<i>u</i> 146	H(11)H(12)	4.3336	.0114	.1424	(fixed)	0387	.3
<i>u</i> 92	H(6)H(13)	4.3338	.0114	.1428	(fixed)	0385	.3
<i>u</i> 102	H(7)H(10)	4.3340	.0114	.1428	(fixed)	0383	.3
<i>u</i> 140	H(10)H(15)	4.3464	.0063	.6393	(fixed)	1662	.3
<i>u</i> 84	H(5)O(19)	4.3555	.0049	.2711	Tied to u83	0206	2.7
<i>u</i> 83	H(5)O(18)	4.3557	.0049	.2709	.0204	0204	2.7
u132	H(9)O(17)	4.3576	.0049	.2425	Tied to u83	0218	2.7
<i>u</i> 121	H(8)O(17)	4.3583	.0049	.2414	Tied to u83	0213	2.7
u122	H(8)O(18)	4.3612	.0049	.2424	Tied to u83	0183	2.7
<i>u</i> 134	H(9)O(19)	4.3618	.0049	.2413	Tied to u83	0178	2.7
u152	H(11)O(18)	4.4548	.0082	.2254	(fixed)	0538	2.6
u161	H(12)O(19)	4.4552	.0082	.2245	(fixed)	0535	2.6
u167	H(13)O(18)	4.4561	.0082	.2245	(fixed)	0526	2.6
<i>u</i> 96	H(6)O(17)	4.4563	.0082	.2323	(fixed)	0516	2.6
u109	H(7)O(17)	4.4564	.0082	.2304	(fixed)	0517	2.6
u144	H(10)O(19)	4.4570	.0082	.2244	(fixed)	0517	2.6
<i>u</i> 118	H(8)H(14)	4.4987	.0120	.4593	(fixed)	2881	.3
<i>u</i> 80	H(5)H(15)	4.4993	.0120	.4514	(fixed)	2890	.3
u131	H(9)H(16)	4.5371	.0120	.3947	(fixed)	2611	.3
<i>u</i> 65	C(4)H(15)	4.6318	.0101	.2230	.0158	1787	1.9
<i>u</i> 50	C(3)H(16)	4.6339	.0101	.1899	Tied to <i>u</i> 65	1794	1.9
u31	C(2)H(14)	4.6755	.0101	.1795	Tied to <i>u</i> 65	1386	1.9
u149	H(11)H(15)	4.7370	.0125	.3149	(fixed)	1676	.3
u141	H(10)H(16)	4.7573	.0125	.3321	(fixed)	1450	.3
u93	H(6)H(14)	4.7937	.0125	.3570	(fixed)	1051	.3
u129	H(9)H(14)	4.8677	.0080	.4663	(fixed)	2875	.3
u81	H(5)H(16)	4.8756	.0080	.3971	(fixed)	2911	.3
u119	H(8)H(15)	4.9011	.0080	.4422	(fixed)	2583	.3
u158	H(12)H(16)	4.9992	.0100	.3021	(fixed)	1674	.3
<i>u</i> 164	H(13)H(15)	5.0178	.0100	.3354	(fixed)	1447	.3
u82	H(5)O(17)	5.0335	.0064	.1294	Tied to <i>u</i> 133	0611	2.3

<i>u</i> 133	H(9)O(18)	5.0361	.0064	.1434	.0118	0578	2.3
u123	H(8)O(19)	5.0362	.0064	.1430	Tied to <i>u</i> 133	0577	2.3
<i>u</i> 106	H(7)H(14)	5.0557	.0100	.3532	(fixed)	1044	.3
<i>u</i> 130	H(9)H(15)	5.4537	.0099	.2510	(fixed)	2456	.3
<i>u</i> 120	H(8)H(16)	5.4557	.0099	.2056	(fixed)	2473	.3
u79	H(5)H(14)	5.4728	.0099	.2019	(fixed)	2304	.3

Table S6. Least squares correlation matrix. All elements are scaled by a factor of 100, and only offdiagonal elements with absolute values >50% are included.

	<i>p</i> 3	<i>p</i> 4	<i>p</i> 5	<i>p</i> 8	<i>u</i> 13	u26	<i>u</i> 52	<i>u</i> 151	<i>u</i> 173	<i>u</i> 185	k2
p2	-56										
<i>p</i> 3	100	-53									
<i>p</i> 4		100	-53		-55	53					
<i>p</i> 5			100	79	60						
p7							60				
<i>p</i> 8				100	55						
иЗ										69	
<i>u</i> 13					100						
u26						100			58		
<i>u</i> 50									68		
<i>u</i> 52							100	57			
u185										100	60
k2											100

Table S7. Restraints used for the refinement of **1**.

Non-ed Data											
Name	Туре	Value	Refined	Difference	Uncertainty						
wiSiO	Parameter	113.0000	112.8749	.1251	1.0000						
wiSiO2	Parameter	123.0000	122.9103	.0897	1.0000						
<i>u</i> 1	Amplitude	.0541	.0563	0022	.0054						
<i>u</i> 12	Amplitude	.1119	.0869	.0250	.0080						
<i>u</i> 16	Amplitude	.1126	.1177	0051	.0120						
<i>u</i> 20	Amplitude	.0830	.0930	0100	.0080						
u27	Amplitude	.1089	.1266	0177	.0110						
u29	Amplitude	.1857	.1999	0142	.0180						
u32	Amplitude	.4524	.4548	0024	.0450						
<i>u</i> 34	Amplitude	.1037	.0904	.0133	.0100						
<i>u</i> 49	Amplitude	.4442	.4393	.0049	.0440						
<i>u</i> 65	Amplitude	.2025	.2230	0205	.0200						
<i>u</i> 67	Amplitude	.2766	.2647	.0119	.0270						
u83	Amplitude	.3101	.2709	.0392	.0310						
<i>u</i> 91	Amplitude	.2714	.2743	0029	.0270						
u99	Amplitude	.2156	.2036	.0120	.0220						
<i>u</i> 116	Amplitude	.1274	.1305	0031	.0130						
<i>u</i> 124	Amplitude	.1178	.1172	.0006	.0110						
<i>u</i> 133	Amplitude	.1654	.1434	.0220	.0160						
<i>u</i> 151	Amplitude	.4170	.4284	0114	.0420						
<i>u</i> 153	Amplitude	.3836	.3752	.0084	.0380						
u174	Amplitude	.6585	.6574	.0011	.0660						
u175	Amplitude	.1743	.1536	.0207	.0130						
u178	Amplitude	.0741	.0724	.0017	.0080						
<i>u</i> 181	Amplitude	.4620	.4638	0018	.0460						
<i>u</i> 186	Amplitude	.0916	.0876	.0040	.0100						

Table S8. Amplitude constraints used for the refinement of 1.

<i>u</i> 1	= 1.0019* <i>u</i> 2	u30	= .8729* <i>u</i> 53	u99	$= 1.0165^*u169$
<i>u</i> 1	= 1.0019* <i>u</i> 3	<i>u</i> 34	= .8685* <i>u</i> 68	<i>u</i> 116	=1.0000* <i>u</i> 128
<i>u</i> 12	$= 1.0009^{*}u11$	u37	= 1.0140* <i>u</i> 54	<i>u</i> 116	= .9992* <i>u</i> 72
<i>u</i> 12	= .9964* <i>u</i> 5	u37	= 1.0140* <i>u</i> 70	<i>u</i> 116	= .9992* <i>u</i> 71
<i>u</i> 12	= 1.0018* <i>u</i> 9	<i>u</i> 46	= 1.0000* <i>u</i> 44	<i>u</i> 116	= 1.0039* <i>u</i> 86
<i>u</i> 12	= 1.0009 * u10	<i>u</i> 46	= 1.0000* <i>u</i> 24	<i>u</i> 116	= 1.0000 * u114
<i>u</i> 12	= .9973* <i>u</i> 7	<i>u</i> 46	= 1.0000* <i>u</i> 23	<i>u</i> 116	$= 1.0039^{*}u147$
<i>u</i> 12	= .9973* <i>u</i> 6	<i>u</i> 46	= .9923* <i>u</i> 42	<i>u</i> 116	= 1.0000 * u126
<i>u</i> 12	= .9973* <i>u</i> 8	<i>u</i> 46	= .9923* <i>u</i> 59	<i>u</i> 116	$= 1.0039^*u137$
<i>u</i> 12	= .9982* <i>u</i> 4	<i>u</i> 46	= .9923*u22	<i>u</i> 124	= .9992* <i>u</i> 135
<i>u</i> 16	= .8171* <i>u</i> 17	<i>u</i> 46	= 1.0000 * u61	<i>u</i> 124	= .9958* <i>u</i> 85
<i>u</i> 16	= .8189* <i>u</i> 18	<i>u</i> 46	= 1.0000* <i>u</i> 63	<i>u</i> 133	= 1.0030* <i>u</i> 123
<i>u</i> 20	= 1.0036* <i>u</i> 38	u49	= .8777* <i>u</i> 64	<i>u</i> 133	= 1.1078* <i>u</i> 82
<i>u</i> 20	= .9988* <i>u</i> 21	u49	= 1.0832* <i>u</i> 33	<i>u</i> 151	$= 1.0496^{*}u143$
u27	= 1.0009* <i>u</i> 41	<i>u</i> 65	= 1.1739* <i>u</i> 50	<i>u</i> 151	= 1.0498 * u168
u27	= 1.0000* <i>u</i> 56	<i>u</i> 65	= 1.2423* <i>u</i> 31	u151	= 1.0226 * u110
u27	= 1.0009* <i>u</i> 45	u67	= 1.0298* <i>u</i> 52	u151	= 1.0299* <i>u</i> 98
u27	= 1.0009* <i>u</i> 62	u67	=.9159* <i>u</i> 35	u151	$= 1.0055^*u159$
u27	= .9982* <i>u</i> 30	u67	= 1.0356* <i>u</i> 69	<i>u</i> 153	= .8820* <i>u</i> 97
u27	= .5173* <i>u</i> 14	u67	$= 1.0080^*u51$	<i>u</i> 153	= .9935* <i>u</i> 160
u27	= .7127* <i>u</i> 13	u67	= .9168* <i>u</i> 36	u153	= .9655* <i>u</i> 166
u27	= .6888* <i>u</i> 15	<i>u</i> 83	= 1.1227* <i>u</i> 134	<i>u</i> 153	= .9729* <i>u</i> 142
u29	= 1.0076* <i>u</i> 40	<i>u</i> 83	= 1.1179* <i>u</i> 122	<i>u</i> 153	= .8816* <i>u</i> 111
u29	= .9973* <i>u</i> 47	<i>u</i> 83	= 1.1171* <i>u</i> 132	<i>u</i> 174	$= 1.4325^*u177$
u29	= 1.0076* <i>u</i> 57	<i>u</i> 83	= .9994* <i>u</i> 84	u174	$= 1.3710^{*}u182$
u29	= 1.0000* <i>u</i> 60	<i>u</i> 83	= 1.1223* <i>u</i> 121	u175	= 1.0806 * u184
u29	= .9984* <i>u</i> 28	<i>u</i> 91	= .9941* <i>u</i> 138	u175	= 1.2686 * u180
u29	= .9723* <i>u</i> 39	<i>u</i> 91	= .9993* <i>u</i> 103	u178	= .9648* <i>u</i> 172
u29	= .9799* <i>u</i> 25	<i>u</i> 91	= .9560* <i>u</i> 73	u178	= .8382* <i>u</i> 183
u29	= .9707* <i>u</i> 58	<i>u</i> 91	= .9490* <i>u</i> 113	u181	= .7010* <i>u</i> 173
u29	= .9728* <i>u</i> 55	<i>u</i> 91	= .9570* <i>u</i> 74	u181	= .9759* <i>u</i> 179
u29	= .9707* <i>u</i> 43	u99	= 1.0160* <i>u</i> 145	<i>u</i> 186	$= 1.0269^{*}u188$
u29	= .9805* <i>u</i> 26	u99	= 1.0113* <i>u</i> 154	<i>u</i> 186	$= 1.0011^*u185$
u32	= 1.1040* <i>u</i> 66	u99	= 1.0103* <i>u</i> 162	u187	= .9896* <i>u</i> 189
u32	= .9072* <i>u</i> 48	u99	= .9986* <i>u</i> 112	u187	= .9896* <i>u</i> 190

	1	d		2	3		
	^t BuSi(OH)₃	∙ ^t BuSi(OH)₃	CF₃Si(OH)₃·	^t BuSi(OH)₃	CF ₃ Si(OH) ₃ · MeSi(OH) ₃		
Si-01	1.704	1.645	1.667	1.647	1.677	1.644	
Si-O2	1.647	1.681	1.629	1.683	1.629	1.637	
Si-O3	1.658	1.682	1.638	1.683	1.638	1.681	
Si-01-H1	114.7	116.4	116.0	117.4	116.1	117.4	
Si-O2-H2	117.8	115.5	117.5	115.5	117.6	115.9	
Si-O3-H3	115.2	115.8	115.1	115.8	115.2	116.2	
01-H1…O1'	-	166.5	-	163.3	-	163.0	
O2-H2…O2'	164.1	-	161.1	-	160.9	-	
O3-H3…O3'	161.2	-	158.0	-	157.9	-	
01…01'	···· O1 ' 2.825 2.82		2.910	2.910	2.903	2.903	
0202'	2…O2' 2.889 2.889		2.846	2.846	2.849	2.849	
03…03'	2.942	2.942	2.894	2.894	2.897	2.897	

Table S9. Comparison of geometric parameters of hydrogen-bonded dimers **1-d**, **2** and **3** calculated at the B3LYP/ $6-31++g^{**}$ level of theory.

References

- 1. N. Winkhofer, H. W. Roesky, M. Noltemeyer and W. T. Robinson, *Angew. Chem.*, 1992, **104**, 670.
- 2. R. J. F. Berger, M. Hoffmann, S. A. Hayes and N. W. Mitzel, Z. Naturforsch., 2009, 64b, 1259.
- 3. S. L. Hinchley, H. E. Robertson, K. B. Borisenko, A. R. Turner, B. F. Johnston, D. W. H. Rankin, M. Ahmadian, J. N. Jones and A. H. Cowley, *Dalton. Trans.*, 2004, 2469.
- 4. A. W. Ross, M. Fink and R. Hilderbrandt, *International Tables for Crystallography C*, Kluwer, Dordrecht, 1992.
- 5. R. Ahlrichs, M. Bär, M. Häser, H.Horn and C. Kölmel, *Chem. Phys. Lett.*, 1989, **162**, 165.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, J. Vreven, T., K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, *Gaussian03*, Gaussian, Inc, Pittsburgh PA, 2003.
- 7. A. Dkhissi, L. Adamowicz and G. Maes, *Chem. Phys. Lett.*, 2000, **324**, 127-136.
- 8. V. A. Sipachev, *THEOCHEM*, 1985, **121**, 143.
- 9. R. Pietschnig and F. Belaj, *Inorg. Chim. Acta*, 2005, **358**, 444-448.
- 10. S. Spirk, S. Salentinig, K. Zangger, F. Belaj and R. Pietschnig, *Supramol.Chem.*, 2011, accepted for publication.