Electronic Supplementary Information (ESI)

Synthesis, Cu(II) complexation, ⁶⁴Cu-labeling and biological evaluation of cross-bridged cyclam chelators with phosphonate pendant arms

Riccardo Ferdani,^a Dannon J. Stigers,^b Ashley L. Fiamengo,^a Lihui Wei,^a Barbara T. Y. Li, ^b James A. Golen,^c Arnold L. Rheingold,^d Gary R. Weisman,^{*,b,e} Edward H. Wong^{*,b,f} and Carolyn J. Anderson^{*a,g,h}

^{*a*} Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA

^b Department of Chemistry, University of New Hampshire, Durham, New Hampshire, 03824, USA

^c Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, North Dartmouth, Massachusetts, 02747, USA

^d Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093, USA

^e E-mail: gary.weisman@unh.edu

^{*f*}*E*-mail: ehw@unh.edu

^g Department of Biochemistry; Department of Chemistry, Washington University, St. Louis, Missouri, 63110, USA

^h Current address: Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15219, USA; E-mail: andersoncj@upmc.edu

Table of Contents

Page

1.	Details of HPLC Purification of CB-TE1A1P (2)	3
2.	List of X-ray Crystallographic Software Employed	4
3.	Detailed Energetic Results for DFT Calculations	5
4.	UV/VIS Spectrum of Cu-CB-TE1A1P	7
5.	NMR Spectra	7
	NMR Spectra of TFA Salt (2•2.5TFA•H ₂ O) of CB-TE1A1P (D ₂ O)	8
	¹ H NMR (500 MHz) & expansions	8
	COSY & expansions	32
	$^{13}C{^{1}H}$ NMR (125.7 MHz) & expansions	38
	$^{13}C{^{1}H}$ NMR (100.5 MHz) & expansions	44
	Comparison of 125.7 & 100.5 MHz ¹³ C{ ¹ H} spectra	45
	HMQC & expansions	51
	$^{31}P{^{1}H} NMR$	56
	NMR Spectra of $6 (C_6 D_6)$	57
	¹ H NMR (500 MHz) & expansions	57
	COSY & expansions	72
	$^{13}C{^{1}H}$ NMR (125.7 MHz) & expansions	79
	$^{13}C{^{1}H}$ NMR (100.5 MHz) & expansions	88
	Comparison of 125.7 & 100.5 MHz ¹³ C{ ¹ H} spectra	89
	HMQC & expansions	98
	$^{31}P{^{1}H} NMR$	107

1. Details of HPLC Purification of CB-TE1A1P (2)

A batch of CB-TE1A1P that contained some impurities was purified by HPLC using a C₁₈

semipreparative column with a 3 mL/min flow rate and the following gradient:

Time (min)	% 0.1% TFA in water	% 0.1% TFA in acetonitrile
0	100	0
10	100	0
20	90	10
21	50	50
23	50	50
24	80	20
25	100	0
30	100	0

The compound eluted with a broad peak starting at 8.0 minutes. The collection was stopped after minute 15.0. A UV chromatogram at 210 nm is shown in the figure below.

LC-MS was used to make sure that no impurity eluted in the 8.0-15.0 minute range. The only peaks visible in the MS chromatogram of the collected fractions are $M^{+}H^{+}$ (m/z=379.3) and $2M^{+}H^{+}$ (m/z=757.4).

2. List of X-ray Crystallographic Software Employed

APEX2 Version 2.2 /SHELXTL (Bruker AXS Inc., 2007) SAINT Version 7.34a (Bruker AXS Inc., 2007) SADABS Version 2007/2 (Sheldrick, Bruker AXS Inc.) XPREP Version 2005/2 (Sheldrick, Bruker AXS Inc.)

Bruker suite of programs APEX2/SHELXTL, SAINT, SADABS, XPREP may be obtained from Bruker AXS.Inx, 5467 East Cheryl Parkway, Madison WI 53711

XS Version 2008/1 (George M. Sheldrick, Acta Cryst. (2008) A64, 112-122.) XL Version 2008/1 (George M. Sheldrick, Acta Cryst. (2008) A64, 112-122.)

X-ray crystal structure figures were prepared using CrystalMaker 8.5 for Mac (CrystalMaker Software Ltd., Centre for Innovation & Enterprise, Oxford University Begbroke Science Park, Sandy Lane, Yarnton, Oxfordshire, OX5 1PF, UK; http://www.crystalmaker.com)

3. <u>Detailed Energetic Results for DFT Calculations</u>

Cu-CBTE2P

			705			So (col/mol	
Method	Conformer	E (kcal/mol)	(kcal/mol)	(kcal/mol)	Hº (kcal/mol)	(Cal/III0) K)	G ^o (kcal/mol)
B3LYP/6- 31G*	[2233]/[2233]	-2224578.459	303.547	-2224274.912	-2224259.710	151.315	-2224304.824
B3LYP/6- 31G*	[2323]/[2323]	-2224577.968	303.065	-2224274.903	-2224259.624	152.192	-2224305.000
	Delta (1st- 2nd)	-0.491		-0.009	-0.086		0.176
M06/6- 31G*	[2233]/[2233]	-2224057.804	302.986	-2223754.818	-2223739.849	149.505	-2223784.424
M06/6- 31G*	[2323]/[2323]	-2224056.887	302.769	-2223754.118	-2223739.125	149.999	-2223783.847
	Delta (1st- 2nd)	-0.917		-0.700	-0.724		-0.577
M06/6- 31+G**	[2233]/[2233]	-2224119.778					
M06/6- 31+G**	[2323]/[2323]	-2224118.92					

-0.858

Cu-CBTE1A1P

Method	Conformer	E (kcal/mol)	ZPE (kcal/mol)	ZPE-corr E (kcal/mol)	H ^o (kcal/mol)	S ^o (cal/mol K)	Gº (kcal/mol)
B3LYP/6- 31G*	[2233]/[2233]	-1986668.793	296.081	-1986372.713	-1986358.562	144.926	-1986401.771
B3LYP/6- 31G*	[2323]/[2323]	-1986669.104	296.320	-1986372.784	-1986358.654	144.825	-1986401.833
	Delta (1st- 2nd)	0.311		0.071	0.092		0.062
M06/6- 31G*	[2233]/[2233]	-1986163.941	295.292	-1985868.649	-1985854.737	142.918	-1985897.348
M06/6- 31G*	[2323]/[2323]	-1986163.415	295.461	-1985867.954	-1985854.048	143.092	-1985896.711
	Delta (1st- 2nd)	-0.526		-0.695	-0.689		-0.637
M06/6-							

31+G** [2233]/[2233] -1986219.083

M06/6-31+G**

** [2323]/[2323] -1986218.413

-0.67

Cu-CBTE2A

Method	Conformer	E (kcal/mol)	ZPE (kcal/mol)	ZPE-corrected E (kcal/mol)	Hº (kcal/mol)	cal/mol K)	Gº (kcal/mol)
B3LYP/6- 31G*	[2233]/[2233]	-1748754.253	289.366	-1748464.887	-1748451.890	137.475	-1748492.879
B3LYP/6- 31G*	[2323]/[2323]	-1748755.612	289.171	-1748466.441	-1748453.402	138.029	-1748494.555
	Delta (1st- 2nd)	1.359		1.554	1.512		1.676
M06/6- 31G*	[2233]/[2233]	-1748265.280	287.683	-1747977.597	-1747964.701	136.644	-1748005.442
M06/6- 31G*	[2323]/[2323]	-1748266.435	288.257	-1747978.179	-1747965.361	136.448	-1748006.043
	Delta (1st- 2nd)	1.155		0.582	0.660		0.601
M06/6- 31+G**	[2233]/[2233]	-1748313.884					
M06/6- 31+G**	[2323]/[2323]	-1748314.563					
	Delta (1st- 2nd)	0.679					

4. <u>UV/VIS Spectrum of Cu-CB-TE1A1P</u>

UV/VIS Spectrum of Cu-CB-TE1A1P

 λ_{max} (aq)/nm 613 (ϵ /dm³ mol⁻¹ cm⁻¹ 24)

5. <u>NMR spectra of ligand 2 and precursor 6</u>

(Note that NMR spectra for ligand **1** and its precursor **4** may be found in the ESI of reference 55 (D. J. Stigers, R. Ferdani, G. R. Weisman, E. H. Wong, C. J. Anderson, J. A. Golen, C. Moore and A. L. Rheingold, *Dalton Trans.*, 2010, **39**, 1699-1701; doi: 10.1039/b920871b).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

his journal is © The Royal Soc	iety of Chemistry 2	011										
1Data File NameRF2OriginVar3SolventD24Number of Scans325Receiver Gain286Acquisition Time3.07Acquisition Date208Spectrometer Frequency499Spectral Width7910Lowest Frequency-14	G CB-TE1A1P_1H rian CO 0000 11-01-21T10:51:45 9.77707 92.0 419.1				H D ₂ O, 499 wi	0.78 MHz, in th MeCN se	nternal ref	H erence				8
11 Nucleus 1H	I								1			
12 Acquired Size 23	976											
13 Spectral Size 65	536											
										и		
10.0 9.5 9.0	8.5 8.0	7.5 7.0	6.5 6.0	5.5 5.0	4.5	4.0 3.5	3.0	2.5	2.0	1.5	1.0 0	.5 0.0
				ppm								

Region of interest: 1.70-1.89 ppm

Region of interest: 2.28 - 2.50 ppm

2.39 ppm 2.48 2.41 2.40 2.38 2.37 2.36 2.35 2.34 2.33 2.32 2.31

2.42

2.47 2.46 2.45 2.44 2.43

2.49

50

2.30

2.29

Region of interest: 2.28 - 2.50 ppm

Exponential: -1.32 Gaussian: 0.70 GB

Region of interest: 2.28 - 2.50 ppm

Exponential: -1.32 Gaussian: 0.70 GB

Region of interest: 2.52 - 2.61 ppm

Region of interest: 2.52 - 2.61 ppm

Exponential: -1.32 Gaussian: 0.60 GB

Region of interest: 2.52 - 2.61 ppm

Exponential: -1.32 Gaussian: 0.60 GB

Region of interest: 2.76 - 3.45 ppm

Region of interest: 2.76 - 3.45 ppm

_3.106 _____3.084 Exponential: -1.32 2.969 Gaussian: 0.60 GB .055 ς ε 3.076 -3.214 3.188 , -3.320 ---3.312 -3.303 -3.295 -3.276 3.339 -3.032 -3.346

Region of interest: 3.49 - 3.78 ppm

Region of interest: 3.49 - 3.78 ppm

Exponential: -1.32 Gaussian: 0.60 GB 3.624 -3.590 -3.650 3.620 3.680 3.697 3.703 3.725 3.559 3.552 -3.530 3.731 -3.676 -3.670 3.522 -3.586 -3.579 3.518 3.64 3.63 ppm 3.76 3.75 3.74 3.73 3.72 3.71 3.70 3.69 3.68 3.66 3.65 3.62 3.61 3.60 3.59 3.58 3.56 3.55 3.54 3.53 3.52 3.51 3.50 78 3.77 3.67 3.57

Region of interest: 3.49 - 3.78 ppm

Exponential: -1.32 Gaussian: 0.60 GB 1811.21 -1794.21 1824.17 1809.36 1838.94 1847.68 1850.72 1861.61 1775.26 1864.69 1778.95 1764.25 1760.41 -1837.04 -1833.97 -1792.34 --1788.90 Т 1815 Hz 1755 1750 1885 1880 1875 1870 1865 1860 1855 1850 1845 1840 1835 1830 1825 1820 1810 1805 1800 1795 1790 1785 1780 1775 1770 1765 1760 174

Region of interest: 3.78 - 4.15 ppm

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

-		
1	Comment	RF-CB-TE1A1P
2	Origin	Varian
3	Solvent	D2O
4	Number of Scans	16
5	Acquisition Time	3.0000
6	Acquisition Date	2011-01-24T15:29:41
7	Spectrometer Frequenc	499.77707
8	Spectral Width	7992.0
9	Lowest Frequency	-1396.6
10	Nucleus	1H
11	Acquired Size	23976
12	Spectral Size	65536

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2011

f1 (ppm)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

f1 (ppm)

f1 (ppm)

is journal is © The Royal	Society of Chemistry 2011			00
1 Data Eile Name	DE_CR_TE1A1D 13C 125MHz			38
2 Origin	Varian			
3 Solvent				
4 Number of Scans	38000	\wedge		
5 Receiver Gain	40	Γ] _ OH		
6 Acquisition Time	1.0000			
7 Acquisition Date	2011-01-22T08:03:16	0		
8 Spectrometer Frequency	/ 125.68036		I	
9 Spectral Width	31446.5	HO Ý		
10 Lowest Frequency	-3783.1	\checkmark		
11 Nucleus	13C	D ₂ O, 125.68 MHz, internal reference	e ,	
12 Acquired Size	31447	with MoCN set at $\delta 1.47$		
13 Spectral Size	65536	WILL MECH SEL al 0 1.47		
	I			
				I I
			, MAN MAN	
ulwuldiwinakolooyidaadoodiinadanadiinaboodiinayooniinadahii	Uningeneral Ander Verleicher Anderer Bill Gegenerer Auf Managener Beiter	าของของฟอกการแหละปลองไข้เขาขอตั้งสามารองไของกลองไข้อสไฟส์อใกมาในสองกับรูปประสาขารอายุที่สุดของแทนทางสาขารองกลาย 	welling and a second standard and a second standard a second standard and a second second second and a second s	l hanaluhayaannantayumahaannantaanlamahaanna

IS	s journal is © The Royal S	Society of Chemistry 2011
	Parameter	Value
	1 Comment	RF-CB-TE1A1P-125 MHz
	2 Origin	Varian
	3 Solvent	D2O
	4 Number of Scans	38000
	5 Acquisition Time	1.0000
	6 Acquisition Date	2011-01-22T08:03:16
	7 Spectrometer Frequency	y 125.68036
	8 Spectral Width	31446.5
	9 Lowest Frequency	-3692.7
	10 Nucleus	13C
	11 Acquired Size	31447
	12 Spectral Size	65536
mba	hallfabottikestantjang dartepantique mederand finder depanantektoring sonder by	
0	200 190 1	80 170 160 150

his journal is © The Roya	al Society of Chemistry 2011		
Parameter	Value		44
1 Comment	RF-CB-TE1A1P-100 MHz		
2 Origin	Varian		
3 Solvent	D2O		
4 Number of Scans	26560		
5 Acquisition Time	1.0025		
6 Acquisition Date	2011-01-25T18:03:03		
7 Spectrometer Frequer	ncy 100.52657	ОН	
8 Spectral Width	25062.7		
9 Lowest Frequency	-1418.1		
10 Nucleus	13C		
11 Acquired Size	25126		
12 Spectral Size	65536		
		$D_{-}O_{-}$ 100 53 MHz	
		$D_2O_1 = 100.33$ MaCN as internal interference, set at S 1.47	
		Mech as internal interference, set at 0 1.47	
	1		
which when you have been a start when the second of the second second second second second second second second	rahawww.aniaa.chuww.bunaalayireidan.lillorarayaihaahhanadyirinaa.adva.churaachad	Management of the second of th	ndamagnamaning humanitadas
LO 200 190	180 170 160 150	140 130 120 110 100 90 80 70 60 50 40 30 20	10 0
		ppm	

Elec This	tro joi	nic Supplementary urnal is © The Roy	Material (ESI) for Dalto al Society of Chemistry	n Transactions 2011
	1	Origin	RF-CB-TE1A1P	
	2	Solvent	D20	
	3	Temperature	25.0	
	4	Number of Scans	16	
	5	Acquisition Time	3.0000	
	6	Acquisition Date	2011-01-24T15:29:41	

7992.0

-1396.6

23976

65536

1H

7 Spectrometer Frequency 499.77707

8 Spectral Width

11 Acquired Size

12 Spectral Size

10 Nucleus

9 Lowest Frequency

D₂O, 499.78 MHz, internal reference with MeCN set at δ 2.06

Electronic S	Supplemer	ntary Materia	al (ESI)) for Dalton	Transactions
This journal	is © The	Royal Socie	ty of C	hemistry 20	011

1	Origin	RF-CB-TE1A1P
2	Solvent	D2O
3	Temperature	25.0
4	Number of Scans	38000
5	Acquisition Time	1.0000
6	Acquisition Date	2011-01-22T08:03:16
7	Spectrometer Frequency	125.68036
8	Spectral Width	31446.5
9	Lowest Frequency	-3692.7
10	Nucleus	13C
11	Acquired Size	31447
12	Spectral Size	65536

(See previous two pages for corresponding 1D proton and carbon spectra)

f1 (ppm)

53

f1 (ppm)

Electronic Su	upplementary	Material (ESI)	for Dalton Transactions
This journal is	s © The Rov	al Society	of C	hemistry 2011

100		
1	Data File Name	RF-CB-TE1A1P_31P
2	Origin	Varian
3	Solvent	D2O
4	Number of Scans	512
5	Receiver Gain	60
6	Acquisition Time	1.6000
7	Acquisition Date	2011-01-22T10:13:04
8	Spectrometer Frequency	202.30717
9	Spectral Width	50600.9
10	Lowest Frequency	-30548.5
11	Nucleus	31P
12	Acquired Size	80961
13	Spectral Size	262144

9.240

D₂O, 202.31 MHz, external reference with 85% phosphoric acid set at δ 0.00

-30

-40

80 70

60

50

40

30

20

10

0

90

-20 ppm

-10

-50

-60 -70 -80 -90

-100

-110

-120

-130

-140

-1!

			57
1 Data File Name	RF-CB-TE1A1P_protected_CH2Cl2 extracts_2011-02-16/ PROTO	N	
2 Origin	Varian		
3 Solvent	C6D6	CH	
4 Number of Scans	32		
5 Receiver Gain	34		
6 Acquisition Time	3.0000	$N_{\rm N} = P^{\prime} O^{\rm CH_3}$	
7 Acquisition Date	2011-02-16T15:28:30		
8 Spectrometer Frequenc	y 499.77585	$H_3C \downarrow I \downarrow \downarrow$	
9 Spectral Width	7992.0	$H_3C^{-}O^{-}$	
10 Lowest Frequency	-1498.0		
11 Nucleus	1H		
12 Acquired Size	23976	RF-CB-TF1A1P_protected (CH ₂ Cl ₂ extracts)	
13 Spectral Size	65536	100.78 MHz internal reference set to TMC at $$ 0.00$	
	C_6D_6 ,	499.78 MHZ, Internal reference set to TMS at 0 0.00	
	Sai	mple was dried over Na ₂ SO ₄ prior to running NMR	
		n Lit.	
			when the second se

ppm

Region of interest: 2.17 - 3.26 ppm

Region of interest: 2.44 - 3.00 ppm

Region of interest: 2.44 - 3.00 ppm

Region of interest: 2.44- 3.00 ppm

Exponential: -1.32 Gaussian: 0.70 GB

1490

1480

1470

1460

1450

1440

1430

1420

Region of interest: 2.44- 3.00 ppm Exponential: -1.32 Gaussian: 0.70 GB 1411.94 1293.96 ۲1343.b9 1341.44 لـ 1341.44 ~1429.32 1444.93 1347, -1394.44 1427.34 1349.30 1296.30 -1472.02 -1398.63 1458.65 --1386.38 1382.35 -1280.89 -1278.51 1242.09 1285.98 -1455.74 1345.42 -1354.96 -1351.86 -1252.00 -1441.15 ---1435.76 1275.86 -1253.711476.60 -1463.95 1449.49 1244.94 1256.89 1391.44 1407.53 1282.94 -1319.49 1271.11 1469.59 1467.70 1323.74 -1379.42 1485.29 1312.14 1307.73 1305.51 1298.50 1489.13 1369.70 1368.77 1365.82 MMMMMM MMMM hM WW MMM ΛW

1410

1400

1390

1380

1370

1360 Hz 1350

1330

1340

1320

1300

1310

1290

1280

1270

1260

1250

1240

1230

122

Region of interest: 2.99- 3.50 ppm

Region of interest: 3.45 - 4.30 ppm

Region of interest: 3.45 - 4.30 ppm

f1 (ppm)

76

	1	Data File Name	RF-CB-TE1A1P_protected_PhMe_13C_2011-02-17/ CA	RBON
	2	Origin	Varian	
	3	Solvent	C6D6	
	4	Number of Scans	5000	
	5	Receiver Gain	40	
	6	Acquisition Time	1.0000	
	7	Acquisition Date	2011-02-17T11:00:46	
	8	Spectrometer Frequency	125.68005	
	9	Spectral Width	31446.5	
	10	Lowest Frequency	-3735.5	
	11	Nucleus	13C	
	12	Acquired Size	31447	
	13	Spectral Size	65536	
j				

RF-CB-TE1A1P_protected_PhMe extracts ^{13}C NMR, 125.68 MHz, C_6D_6 with reference peak set at δ 128.06 (central peak)

M MA A

-1

ר ppm

30.5

..0

30.0

25.5

29.0

29.5

1

28.5

27.5

27.0

26.5

26.0

28.0 ppm

	1	Data File Name	RF-CB-TE1A1P_protected_PhMe_13C_2011-02-17/ CA	RBON
	2	Origin	Varian	
	3	Solvent	C6D6	
	4	Number of Scans	5000	
	5	Receiver Gain	40	
	6	Acquisition Time	1.0000	
	7	Acquisition Date	2011-02-17T11:00:46	
	8	Spectrometer Frequency	125.68005	
	9	Spectral Width	31446.5	
	10	Lowest Frequency	-3735.5	
	11	Nucleus	13C	
	12	Acquired Size	31447	
	13	Spectral Size	65536	
1				

$\label{eq:RF-CB-TE1A1P_protected_PhMe extracts} $^{13}C NMR, 125.68 MHz, C_6D_6 with reference peak set at $128.06 ppm (central peak)$$

ר ppm

-1

	EC	uu	The Supplementary Ma		
ΓI	nis I	jοι	urnal is © The Royal S	ociety of Chemistry 2011	
		1	Data File Name	RF-CB-TE1A1P_protected_400_13C_17Feb2011/ CAR	ON.fid
		2	Origin	Varian	
		3	Solvent	C6D6	
		4	Number of Scans	5000	
		5	Receiver Gain	24	
		6	Acquisition Time	1.0025	
		7	Acquisition Date	1969-11-13T03:20:24	
		8	Spectrometer Frequency	100.52631	
		9	Spectral Width	25062.7	
		10	Lowest Frequency	-1402.7	
		11	Nucleus	13C	
		12	Acquired Size	25126	
		13	Spectral Size	65536	
					1

ppm

RF-CB-TE1A1P_protected_PhMe extracts 13 C NMR, 100.52 MHz, C₆D₆ with reference peak set at 128.06 ppm (central peak)

50

. 30

-1

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2011

10.0

9.5

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

	1	Data File Name	RF-CB-TE1A1P_protected_PhMe extracts_C6D6-PROTON
	2	Origin	Varian
	3	Solvent	C6D6
	4	Number of Scans	16
	5	Receiver Gain	24
	6	Acquisition Time	3.0000
	7	Acquisition Date	2011-02-18T16:17:15
	8	Spectrometer Frequency	499.77585
	9	Spectral Width	7992.0
	10	Lowest Frequency	-1496.1
	11	Nucleus	1H
	12	Acquired Size	23976
	13	Spectral Size	65536
. 1			

Т

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

-1

4.0

4.5 ppm

5.0

1	Data File Name	RF-CB-TE1A1P_protected_PhMe extracts_13C
2	Origin	Varian
3	Solvent	C6D6
4	Number of Scans	5000
5	Receiver Gain	40
6	Acquisition Time	1.0000
7	Acquisition Date	2011-02-17T11:00:46
8	Spectrometer Frequency	125.68005
9	Spectral Width	31446.5
10) Lowest Frequency	-3735.5
11	Nucleus	13C
12	Acquired Size	31447
13	Spectral Size	65536
_		

MANN/MANNA

C₆D₆, 125.68 MHz, internal reference set to TMS at δ 0.00

WW.MININAMAWAWAWAWAWAWA

ppm

0.000

-10

-20

Tailancer Value (2, 11) To proton and carbon spectra) Orgin Weins 500 Solvent C.656 Number of Scars 32 Aquidabion Thme 0.1500 Spectravical 10 proton and carbon spectra) Spectravical 30 Aquidabion Thme 0.1500 Spectravical 10 proton and carbon spectra) Spectravical 30 Aquidabion Thme 0.1500 Spectravical 10 proton and carbon spectra) Spectravical 10 proton and carbon spectra)<		Parameters	(See previous two pages for corresponding			
Data Preame No. 100 (2014) Solution Construction Constructing Construction Construction Constructing Constructing	Parameter	Value (r2, r1)	1D proton and carbon spectra)			
Jorgin watan		RF-CB-TETATP_protected_Prime extracts_C6D6-HMQC				
Boldwart 0.006 Munter of Same 30 Aquidito Tatica 0.1500 Aquidito Date 20140-147214508 Spectrawer Srequency 44968 (-1206.5) Nucleus (11.1) Spectrawer Srequency -44968 (-1206.5) Nucleus (11.1) Spectrawer Srequency -44968 (-1206.5) Nucleus (11.1) Spectrawer Srequency -44968 (-1206.5) Spectrawer Srequency -44968 (-1206.5) Aquidito Szee (12.1) Spectrawer Srequency -44968 (-1206.5) Auguide Szee (12.1) Spectrawer Srequency -4908 (-1206.5) Spectrawer Srequency -4008 (-1206.5) Spectrawer Srequency -408.5	Origin	varian				
Number of 2015 3.2 Acquiston Time 0.1500 Acquiston Time 0.1500 Spectrometer Fraquency (4996) 7587837, 735.75283) Spectrometer Fraquency (4996) 710.001, 0.000) Constrained and the second and the seco	Solvent	C6D6				
eccever tails output output counts acquisition the counts acquisite the counts co	Number of Scans	32				
Acquests in the 2011-021-18721-5:08 Spectrometer Frequency (499,775984, 125,675284) Spectrometer Frequency (499,775984, 125,675284) Spectrometer Frequency (499,75984, 126,5) Nucleus (11,12C) Acquest Size (120,225) Spectral	Receiver Gain	30				
Acquero Date	Acquisition Time				1	
spectral Way //3948/, 12.6.75, 28(4) Spectral Way //3948/, 12.6.5) Nuckeus (H), 15C) Spectral Way //3948/, 12.6.75, 28(4) Spectral Way //3948/, 12.6.75, 28(4) Spectral Size -2008/, 2048) Spectral Size -2018/, 2048, 2048) Spectral Size -2018/, 2048,	Acquisition Date		MMM_M_M_M_M_M_M_M_M_M_	~l		_
bectral Size 10000 1, 1151.30) Lines Frequency (10001, 1156.5) Nuckus (114, 12C) Acquied Size (10002, 2016) Spectral Size -2046 2018) Spectral Size -2046 2018 Spectral Size -2046 201 Spectral Size -204 Spectral Size -2046 Spectral Size -204	Spectrometer Frequen	hcy (499.//58484, 125.6//5284)				 -
Lovest requency - (14496, -1205, 5) Acquired Size (1200, 256) Spectral Size - (2048, 2018)	Spectral Width	(8000.0, 21361.8)			*	
Nucleus (11,1,15,2)	Lowest Frequency	(-1496 ,6,-1206.5)		0	{0.0010.000}	l Č
Acquared Size (1200) (256)	Nucleus	(1H, 13C)				
spectral See	Acquired Size	(1200, 256)				
	Spectral Size	<u>(2048,</u> 20 1 8)		0		
		Abb and a second se				
			େ ପ୍ରତିତ୍ୱ	905		[
		ar Landau and Landau an				

**************************************						[
The second seco			ବ∎ତ ବହ ବହ ବହତ ବହ			
			₀ø₀ ∰. ^{€₽} ₀₿ ^{⊕₽} ₁○ ₩₽₽ ₫₽₽			
			60 (D)			-60
		area var				
		**t/st				
						1-80
		T. See and the second				
						-90
7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 mm 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0						-100
						-110
• • • • • • • • • • • • • • • • • • •		**************************************				-120
7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0						
7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0						-130
7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0						
7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0						-140
5 [
7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0		\$ L			<u> </u>	⊔∟150 ⊣
		7.5 7.0 6.5 6.0 5.5	5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5	1.0 0.5	0.0 -0.5 -	·1.0

 \wedge N -59.5 -60.0 -60.5 -61.0 -61.5 -62.0 Г · 1 3.06 3.04 3.02 3.00 2.98 2.96 2.94 2.92 2.90 2.88 2.86 2.84 2.82 2.80 2.78 2.76 2.74 2.72 2.70 2.68 2.66 2.64 2.62 2.60 2.58 2.56 ppm

105

	Parameter	Value	
1	Title	RF-CB-TE1A1P_prot	ected-31P CH ₃
2	Solvent	C6D6	
3	Temperature	25.0	
4	Number of Scans	32	
5	Spectrometer Frequency	202.31	
6	Spectral Width	50600.9	
7	Lowest Frequency	-30527.2	
8	Nucleus	31P	DE CRITEIAID protocted DhMa autrocta
9	Acquired Size	80961	RF-CB-TETATP_protected_Prime extracts
10	Spectral Size	262144	31 P NMR, 202.31 MHZ, C ₆ D ₆ , external reference with
			85% phosphoric acid set to δ 0.00
		96	
ANAMANANANA	yATTATIN MAANATIN'N QAANTITI TIPANGAANAYAANAANAANAANAANA	ULUNUMATINI MININA YANA MUMATINI WANA WANA MININA	