Supporting Information for:

Reactivity of a Cl-boratabenzene Pt(II) complex with Lewis bases: generation of the kinetically favoured Clboratabenzene anion

Stephanie S. Barnes^a, Marc-André Légaré^a, Laurent Maron,^{b*} and Frédéric-Georges Fontaine^a*

Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada, G1V 0A6.

Université de Toulouse, INSA, UPS, LPCNO, 135 avenue de Rangueil, F-31077 Toulouse, France, and CNRS, LPCNO, UMR 5215 CNRS-UPS-INSA, F-31077 Toulouse, France

*Email : frederic.fontaine@chm.ulaval.ca

Contents

1. Synthetic Procedures	S2
a. General Experimental	S2
b. Reactions of 1 with Lewis Bases	S2
c. Synthesis of borabenzene adducts	S 5
d. Reactions with AgBF ₄	S6
2. NMR characterization	S 8
3. MS characterization	S14
4. Variable Temperature NMR and WINDNMR simulations	S18
5. DFT calculations	S23
6. References	S50

1. Synthetic procedure

a. General experimental

Unless otherwise specified, manipulations were carried out under an atmosphere of dinitrogen, using standard glovebox and Schlenk techniques. Dry, deoxygenated, distilled solvents were used for all manipulations. Toluene and benzene were distilled from Sodium/benzophenone. Pyridine was dried over CaH₂. Deuterated solvents were dried over NaK, degassed using freeze-pump-thaw cycles, and purified by vacuum transfer. The synthesis of **1** and **4-Py** was previously reported. ^{S1}

NMR spectra were recorded on a Varian Inova NMR AS400 spectrometer, at 400.0 MHz (¹H), 100.580 MHz (¹³C), 161.923 MHz (³¹P), Bruker Avance NMR 400 MHz spectrometer at 128.336 MHz (¹¹B), or on a Bruker NMR AC-300 at 300MHz (¹H), 75.435 MHz (¹³C), 121.442 MHz (³¹P). ¹H NMR (7.15 ppm) and ¹³C{¹H} (128.02 ppm) NMR chemical shifts are referenced to residual protons in deuterated solvent. Multiplicities are reported as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), or overlapping (ov). Chemical shifts are reported in ppm. Coupling constants are reported in Hz. The probe temperature was calibrated ay looking at the difference in chemical shift in ethylene glycol to give the equation $T_{real} = (T_{observed} \times 0.9994) - 0.8879$.

HPLC-MS analyses were performed on a Dionex Ultimate 3000 Liquid Chromatograph and an Applied Biosystem API2000 triple quadrupole mass spectrometer (LC-MSdelay 0.27 min), using a reversed-phase gradient column (RSLC PA2 2.2 μm 120 Å, 2.1 x 150mm). The analysis employed the mass spectrometry (Q1MS) with electrospray ionization (ESI-MS) in positive mode.

HRMS characterization was possible using an Agilent Technologies 6210 LC Time of Flight Mass Spectrometer. Products in toluene solutions were introduced to the nebulizer by direct injection. Neutral borabenzene adducts were characterized using APPI ionization in positive mode. Ionic species were ionized by electrospray (ESI-MS) in both positive and negative modes.

b. Reactions of 1 with Lewis Bases; Preparation of 2-L

An equivalent of **L** (L=PMe₃, Pyridine, Acetonitrile, *tert*-butylisocyanide) was added, *via* microsyringe, to a J-Young tube containing a C_6D_6 solution of freshly prepared (IMes)₂Pt(H)(ClBC₅H₄SiMe₃) (**1**). Total conversion of **1** was observed within 5 minutes by NMR.

2-MeCN

1 in C₆D₆ (5.9 mg, 0.006 mmol), MeCN (0.3 mg, 0.006 mmol); $\delta_{\rm H}$ (C₆D₆) 8.02 (dd, $J_{\rm H-H}$ = 7.2 and 1.5 Hz, 1H, H³), 7.75 (ddd, $J_{\rm H-H}$ = 10.5, 6.8 and 1.5 Hz, 1H, H⁵), 6.95 (dd, $J_{\rm H-H}$ = 10.3 and 1.0, Hz, 1H, H⁶), 6.82 (td, $J_{\rm H-H}$ = 6.8 and 1.2 Hz, 1H, H⁴), 6.74 (s, 8H, H^{*meta*}Mes), 5.95 (s, 4H, H^{imid}), 2.28 (s, 12H, Me^{*para*}Mes), 1.64 (s, 24H, Me^{*ortho*}Mes), 1.38 (s, 3H, *Me*CN), 0.84 (s, 9H, SiMe₃), -19.13 (s, ¹ $J_{\rm Pt-H}$ = 1520 Hz, H-Pt); $\delta_{\rm B}$ (C₆D₆) 38.7 (br); $\delta_{\rm C}$ (C₆D₆) 171.8 (carbene), 139.5 (C³), 138.5 (C^{*para*}Mes), 136.5 (C^{*ipso*}Mes), 135.8 (C⁵), 135.1 (C^{ortho}Mes), 129.2 (C^{meta}Mes), 128.6 (MeCN), 127.4 (br, C⁶), 121.8 (C^{imid}), 111.6 (C⁴), 21.2 (Me^{para}Mes), 17.8 (Me^{ortho}Mes), 2.0 (SiMe₃), 1.7 (*Me*CN), C² was not detected.

2-CNtBu

1 in C₆D₆ (5.9 mg, 0.006 mmol), CN*t*Bu (0.5 mg, 0.006 mmol); $\delta_{\rm H}$ (C₆D₆) 7.97 (dd, $J_{\rm H-H}$ = 7.0 and 1.3 Hz, 1H, H³), 7.75 (ddd, $J_{\rm H-H}$ = 10.6, 6.8 and 1.6 Hz, 1H, H⁵), 6.96 (dd, $J_{\rm H-H}$ = 10.3 and 1.0 Hz, 1H, H⁶), 6.76 (td, $J_{\rm H-H}$ = 7.0 and 1.2 Hz, 1H, H⁴), 6.65 (s, 8H, H^{meta}Mes), 6.10 (s, 4H, H^{imid}), 2.27 (s, 12H, Me^{para}Mes), 1.65 (s, 24H, Me^{ortho}Mes), 1.03 (s, 9H, CNtBu), 0.83 (s, 9H, SiMe₃), -7.79 (s, ¹ $J_{\rm Pt-H}$ = 1101 Hz, H-Pt); $\delta_{\rm B}$ (C₆D₆) 38.5 (br); $\delta_{\rm C}$ (C₆D₆) 167.3 (carbene), 156.2 (*C*NC(CH₃)₃), 139.3 (C³), 138.3 (C^{para}Mes), 136.3 (C^{ipso}Mes), 135.7 (C⁵), 134.8 (C^{ortho}Mes), 129.3 (C^{meta}Mes), 127.4 (br, C⁶), 123.0 (C^{imid}), 111.4 (C⁴), 53.4 (CNC(CH₃)₃), 29.7 (CNC(*CH₃*)₃), 21.3 (Me^{para}Mes), 18.1 (Me^{ortho}Mes), 2.2 (SiMe₃), C² was not detected; ESI-MS: m/z = 887.8 (calcd. = 887.4).

2-Py

1 in C₆D₆ (5.9 mg, 0.006 mmol, 8 mol/L), Pyridine (0.5 mg, 0.006 mmol); $\delta_{\rm H}$ (C₆D₆) 8.08 (dd, $J_{\rm H-H} = 7.1$ and 1.6 Hz, 1H, H³), 7.83 (ddd, $J_{\rm H-H} = 10.1$, 6.8 and 1.5 Hz, 1H, H⁵), 7.42 (t, $J_{\rm H-H} = 7.6$ Hz, 1H, H^{*para*}Py), 7.04 (d, $J_{\rm H-H} = 10.3$ Hz, 1H, H⁶), 6.87 (t, $J_{\rm H-H} = 7.1$ Hz, 1H, H⁴), 6.78 (d, $J_{\rm H-H} = 5.4$ Hz, 2H, H^{*ortho*}Py), 6.72 (s, 8H, H^{*meta*}Mes), 6.59 (dd, $J_{\rm H-H} = 7.2$ and 5.6 Hz, 2H, H^{*meta*}Py), 5.93 (s, 4H, H^{*imid*}), 2.32 (s, 12H, Me^{*para*}Mes), 1.52 (s, 24H, Me^{*ortho*}Mes), 0.86 (s, 9H, SiMe₃), -20.10 (s, ¹ $J_{\rm Pt-H} = 1348$ Hz, H-Pt); $\delta_{\rm B}$ (C₆D₆) 37.5 (br); $\delta_{\rm C}$ (C₆D₆) 173.3 (carbene), 150.3 (C^{*ortho*}Py), 139.4 (C³), 139.0 (C^{*para*}Py), 138.8 (C^{*para*}Mes), 136.4 (C^{*ipso*}Mes), 136.0 (C⁵), 135.3 (C^{*ortho*}Mes), 129.3 (C^{*meta*}Mes), 127.5 (br, C⁶), 125.9 (C^{*meta*}Py), 122.0 (C^{*imid*}), 111.6 (C⁴), 21.3 (Me^{*para*}Mes), 17.9 (Me^{*ortho*}Mes), 2.2 (SiMe₃), C² was not detected; HRMS : m/z (cation) = 883.3999 (calcd. = 883.4031), m/z (anion) = 183.0694 (calcd. = 183.0570).

2-PMe₃

1 in C₆D₆ (5.9 mg, 0.006 mmol), PMe₃ (0.5 mg, 0.006 mmol); $\delta_{\rm H}$ (C₆D₆) 7.95 (dd, $J_{\rm H-H}$ = 7.1 and 1.5 Hz, 1H, H³), 7.71 (ddd, $J_{\rm H-H}$ = 10.4, 6.7 and 1.5 Hz, 1H, H⁵), 6.90 (dd, $J_{\rm H-H}$ = 10.2 and 1.1, Hz, 1H, H⁶), 6.75 (td, $J_{\rm H-H}$ = 6.7, 1.1 Hz, 1H, H⁴), 6.64 (s, 8H, H^{meta}Mes), 6.06 (s, 4H, H^{imid}), 2.24 (s, 12H, Me^{para}Mes), 1.74 (s, 24H, Me^{ortho}Mes), 0.79 (s, 9H, SiMe₃), 0.55 (d, $J_{\rm H-P}$ = 8.8 Hz, 9H, PMe₃), -5.61 (d, $J_{\rm P-H}$ = 187.9 Hz, ¹ $J_{\rm Pt-H}$ = 1060 Hz, H-Pt); $\delta_{\rm P}$ (C₆D₆) -23.2 (s, ¹ $J_{\rm P-Pt}$ = 1694 Hz, P-Pt); $\delta_{\rm B}$ (C₆D₆) 39.7 (br); $\delta_{\rm C}$ (C₆D₆) 139.4

(C₃), 138.4 (C^{*para*}Mes), 136.3 (C^{*ipso*}Mes), 135.7 (C⁵), 135.7 (C^{*ortho*}Mes), 129.7 (C^{*meta*}Mes), 127.2 (br, C⁶), 123.5 (C^{*imid*}), 111.4 (C⁴), 21.3 (Me^{*para*}Mes), 18.8 (Me^{*ortho*}Mes), 16.6 (br, PMe₃), 2.2 (SiMe₃), carbenic carbon and C² were not detected; ESI-MS: m/z = 880.1 (calcd. = 880.4).

c. Synthesis of borabenzene adducts (4-L)

1-tertbutylisocyanide-2-(trimethylsilyl)borabenzene (4-BuNC) 54µL (0.5 mmol) of (*tert*-butyl)isocyanide was added to a solution of 1-chloro-2,6-di(trimethylsilyl)-2,4boracyclohexadiene and 1-chloro-2,2-di(trimethylsilyl)-3,5-boracyclohexadiene (120 mg, 0.47 mmol) in 3 mL of benzene. The reaction mixture was stirred for three hours to become a brown solution. The solvent was evaporated *in vacuo* and the residue washed two times with pentane to afford 18 mg (18%) of a light brown solid. $\delta_{\rm H}$ (C₆D₆) 8.13 (d, $J_{\rm H-H} = 7.3$ Hz, 1H), 8.06-7.93 (ov. m, 2H), 7.46 (td, $J_{\rm H-H} = 7.0$ and 1.7 Hz, 1H), 0.68 (s, CNtBu), 0.48 (s, 9H); $\delta_{\rm B}$ (C₆D₆) 14.6 (s); $\delta_{\rm C}$ (C₆D₆) 138.7, 134.8, 122.9, 54.5, 28.6, 1.4, C^{2/6} and *C*NC(CH₃)₃ were not detected; no MS signal could be observed.

1-trimethylphosphine-2-(trimethylsilyl)borabenzene (**4-PMe₃**) 34μ L (0.2 mmol) of trimethylphosphine was added to a solution of 1-chloro-2,6-di(trimethylsilyl)-2,4-boracyclohexadiene and 1-chloro-2,2-di(trimethylsilyl)-3,5-boracyclohexadiene (85 mg, 0.2 mmol) in 2 mL of pentane. The reaction mixture was stirred for eight hours during which the product precipitated as a pale solid. The solid was washed two times with pentane and dried *in vacuo* to afford 26 mg (35%) of a light brown solid. A significant portion of the 1-trimethylphosphine-borabenzene was observed as side-product, but no rational explication could be found to explain the loss of the other TMS group.^{S2} $\delta_{\rm H}$ (C₆D₆) 8.17 (t, $J_{\rm H-H} = 6.6$ Hz, 1H), 8.00 (br m, 1H), 7.40 (tdd, $J_{\rm H-H} = 7.3$, 2.3 and 1.1 Hz,

1H), 7.02 (td, $J_{H-H} = 9.9$ and 1.1 Hz, 1H), 0.79 (d, $J_{H-P} = 11.0$ Hz, 9H) 0.41 (s, 9H); δ_P (C₆D₆) -22.8 (br, P-B); δ_B (C₆D₆) 24.3 (d, ${}^1J_{P-B} = 80.7$ Hz); δ_C (C₆D₆) 140.3 ($J_{C-P} = 19.2$ Hz), 134.8 ($J_{C-P} = 18.1$ Hz), 120.8, 12.3 ($J_{C-P} = 40.7$ Hz), 2.9; HRMS: m/z = 224.1378 (calcd. = 224.1324).

1-acetonitrile-2-(trimethylsilyl)borabenzene (4-MeCN) could not be made using the same methodology and evidences point towards the instability of the species.

d. Reactions with AgBF₄

 $(IMes)_2Pt(H)(Cl)$ (3) can be isolated form degraded samples of 1 and 2. Old reaction mixtures were concentrated *in vacuo* and washed with successive portions of ethyl ether. The dried residue is pure 3.

To a dilute solution of **3** in C_6D_6 were added an excess of L ligand and an excess of solid AgBF₄. A large amount of solid was present in the NMR tube which can be attributed to the limited solubility of [(IMes)₂Pt(H)(L)]BF₄ in C_6D_6 . ¹H NMR spectra were compared to spectra of corresponding 2-L to characterize the cation.

2. NMR Characterization

Fig. S2-¹H NMR spectrum of **2-BuNC** (400 MHz, C₆D₆)

Fig. S3- ¹H NMR spectrum of **2-Py** (400 MHz, C_6D_6)

Fig. S4- ¹H NMR spectrum of **2-PMe₃** (400 MHz, C_6D_6)

Fig. S5- ¹H NMR spectrum of the hydride region for **2-MeCN** and the reaction of **3** with AgBF₄ and MeCN. (400 MHz, C_6D_6)

Fig. S6- ¹H NMR spectrum of the hydride region for **2-BuNC** and the reaction of **3** with AgBF₄ and *t*BuNC. (400 MHz, C_6D_6)

Fig. S7- ¹H NMR spectrum of the hydride region for **2-Py** and the reaction of **3** with AgBF₄ and pyridine. (400 MHz, C_6D_6)

Fig. S8- ¹H NMR spectrum of the hydride region for **2-PMe₃** and the reaction of **3** with AgBF₄ and PMe₃. (400 MHz, C_6D_6)

3. MS Characterization

Fig. S10 - Simulated spectrum for the $C_{47}H_{58}N_5Pt_1$. ^{S3}

Fig. S11 - Experimental HRMS spectrum for the cationic fragment of 2-Py

Fig. S12 - Simulated spectrum for the $C_{47}H_{54}N_5Pt_{1}.\,^{3S}$

Fig. S14 - Simulated spectrum for the $C_{45}H_{58}N_4P_1Pt_1.\,^{3S}$

Fig. S15 - Experimental HRMS spectrum for the 1-Cl-2-TMS-boratabenzene fragment (taken from sample **2-Py**).

Fig. S16 - Simulated spectrum for the $C_8H_{13}B_1Cl_1Si_1$.³⁸

4. Variable Temperature NMR and WINDNMR simulations⁸⁴

Fig. S16 – ¹H NMR of the aromatic region for the reaction between **1** and a subequivalent of pyridine at -30 °C and 20 °C in C_6D_6 .

Fig. S17. Experimental and simulated (WINDNMR-pro) ¹H NMR spectra (down) and difference spectra (up) of the SiMe₃ region for a 63.45 : 36.55 ratio of **1** to **2-Py** at various temperatures. The ppm scale is downfield by 2 ppm because of a glitch when importing the experimental data from MestRec. The Va and Vb values were not kept constant in order to account for the drifting of the chemical shift of **1** and **2-Py** with temperature, which can be seen by the IMes resonances on Fig S16. At low temperature, the difference spectra are not exactly flat because of the presence of ²⁹Si satellites that could not be accounted for in the simulation.

a) -30° C (k = 0, no exchange)

b) 0° C (k = 4.49 sec⁻¹)

users fgfon1 documents articles articles encours chloroborata fidvt Otraite.nuts] (07-26-2011, 14:0

c) 10° C (k = 10.7 sec⁻¹)

sers fgfon1 documents articles articles encours chloroborata fidvt 10traite.nuts] (07-26-2011, 13:5

d) 20° C (k = 24.5 sec⁻¹)

sers fgfon1 documents articles articles encours chloroborata fidvt 20traite.nuts] (07-26-2011, 13:5

e) 30° C (k = 57.1 sec⁻¹)

sers fgfon1 documents articles articles encours chloroborata fidvt 30traite.nuts] (07-26-2011, 13:1

S20

f) 40° C (k = 106 sec⁻¹)

sers fgfon1 documents articles articles encours chloroborata fidvt 40traite.nuts] (07-26-2011, 13:2

sers fgfon1 documents articles articles encours chloroborata fidvt 50traite.nuts] (07-26-2011, 13:4

h) 60° C (k = 382 sec⁻¹)

sers fgfon1 documents articles articles encours chloroborata fidvt 60traite.nuts] (07-26-2011, 14:5

g) 50°C (k = 213 sec⁻¹)

Fig. S18. Excel sheet with Eyring plot for the determination of the rate constant for the exchange of the 1-Cl-2-TMS-boratabenzene moiety in **1** and **2-L**. Model taken from an online workshop by William D. Jones.^{S5}

	WINDNMR								[A]	0,0041 M	
	ka+kb	ka							[B]	0,0023 M	
	6	2,15625									
	12,5	4,492188									
	29,9	10,74531									
	68,2	24,50938									
	159	57,14063									
	296	106,375									
	592	212,75									
	1085	389,9219									
Eyring Plo	ot for the exc	change betw	veen Cl-bor	atabenzen	e						
T(°C)	K	1/T	ln(K/T)	calc	Statistique	s:					
59,07	381,6500	0,00301	0,138767	0,175545	-6431,41	19,53561	pente m	ordonnée b			
49,08	212,7500	0,003104	-0,41509	-0,42471	70,50906	0,234847	std error m	std error b			
39,09	106,3750	0,003203	-1,07674	-1,06337	0,999399	0,041204	r2	std error y			
29,09	57,1406	0,003309	-1,66564	-1,74496	8319,996	5	F	d.f.			
19,1	24,5094	0,003422	-2,47849	-2,47244	14,12528	0,008489	reg sum sq	res sum sq			
9,11	10,7453	0,003543	-3,26829	-3,25143							
-0,89	4,4922	0,003673	-4,10434	-4,08845							
95% confi	dence limits	:									
$\Delta H^0 =$	= 12,78 ± 0,3	84 kcal/mol									
∆S ⁰ =	-8,47 ± 1,1	4 e.u.									
	0.5										
	0,5										
	0	1									
		0,001	0,002	0,003	0,004	y = -6431,	4x + 19,536				
	-0,5				i	$R^2 = 0$),9994				
	-1										
				1							
	-1,5				•	A Cár	io1				
	-2				<u>}</u>	 Set 	let				
					1	—— Lin	éaire (Série1)				
	-2,5				•						
	-3				<u> </u>						
					•						
	-3,5										
	-4										
	"				•						
	-4,5 💷										

4. Computational details

Calculations were carried out using Gaussian 03 package at the DFT level by means 6 B3PW91.^s of the hybrid functional density For the Cl, P and Si atoms, ^{S7} the Stuttgart-Dresden pseudopotentials were used in combination with their associated basis sets. For the N, B, C, and H atoms the all electron 6-311G(d,p)⁸ basis sets were used. The nature of the optimized stationary point, minima, has been verified by means of analytical frequency calculation at 298.15 K and 1 atm. The geometry optimizations have been achieved without any geometrical constraints. The energy data presented correspond to the free enthalpy in gas phase of the computed compounds in which thermal, vibrational, translational and rotational contributions have been included.

Cartesian coordinates of the optimized structures

Complex 1

120

E: -2324.294086 a.u.

С	0.262075	0.584633	0.517492	Ν	-0.802630	1.760216	2.384116
С	0.204019	0.860529	1.890827	С	-0.647361	3.094755	2.629653
С	1.036536	0.213771	2.817113	Ν	-1.849218	3.476983	3.147062
С	1.964923	-0.707530	2.329215	С	-2.730444	2.408737	3.214922
С	2.069536	-0.998906	0.966689	С	-2.073848	1.328063	2.733997
С	1.207835	-0.347759	0.082179	Pt	1.033364	4.199516	2.354537

Cl	0.155248	4.903607	0.050498	С	4.052200	2.568037	0.689275
С	-2.202377	4.789789	3.621005	С	4.199726	3.501778	5.024200
С	-2.990878	5.623307	2.815874	С	1.976693	5.816321	8.915345
С	-3.353471	6.868921	3.335835	С	1.997614	8.016080	4.375134
С	-2.968890	7.282628	4.609952	Н	5.341883	6.728698	3.745588
С	-2.211036	6.406348	5.391223	Н	5.653281	6.248046	1.022302
С	-1.818727	5.152653	4.922614	Н	3.204201	6.195792	-3.203415
С	-3.443641	5.249670	1.432554	Н	3.939154	2.154862	-1.980515
С	-3.356379	8.644655	5.121991	Н	3.319930	3.872708	7.561618
С	-1.021808	4.226081	5.798748	Н	1.445150	7.687880	7.005676
С	0.929099	0.489642	4.291624	Н	4.401307	2.766247	5.806977
С	3.093594	-1.982832	0.465271	Н	3.662701	3.002905	4.210535
С	-0.661759	1.256067	-0.459531	Н	5.161833	3.832102	4.616791
С	2.817629	5.183558	2.300195	Н	1.496183	7.703674	3.456099
N	3.462136	5.733594	3.379338	Н	1.342753	8.715110	4.900020
С	4.697583	6.251468	3.024506	Н	2.900620	8.562229	4.077580
С	4.847231	6.021449	1.701713	Н	1.131454	6.482908	9.108153
N	3.699026	5.373954	1.272713	Н	1.717995	4.821579	9.290828
С	3.028103	5.732836	4.749308	Н	2.821845	6.178686	9.513423
С	3.408068	4.658330	5.569933	Н	3.145725	2.392970	1.280602
С	3.037627	4.700929	6.914791	Н	4.365526	1.615988	0.254311
С	2.328499	5.779534	7.451348	Н	4.833553	2.899932	1.381930
С	1.989464	6.835791	6.604569	Н	3.071425	7.941228	-1.678586
С	2.334797	6.842011	5.249985	Н	2.139794	7.456198	-0.259441
С	3.582517	4.935479	-0.093076	Н	3.872706	7.772189	-0.110511
С	3.370479	5.899398	-1.092057	Н	3.807445	2.639058	-4.313157
С	3.374233	5.464353	-2.417170	Н	2.540572	3.835303	-4.628943
С	3.567376	4.123068	-2.759642	Н	4.235869	4.284471	-4.807626
С	3.774997	3.201615	-1.733597	Н	-3.733851	2.527216	3.591523
С	3.798541	3.584101	-0.389480	Н	-2.381780	0.302669	2.604250
С	3.106917	7.343241	-0.764988	Н	-3.944050	7.535548	2.711745
С	3.539873	3.693576	-4.202193	Н	-1.922663	6.701132	6.397950

Н	2.614988	-1.218905	3.036184	С	-0.335279	7.590465	1.086706
Н	1.263084	-0.573752	-0.980478	С	-0.806551	8.899007	0.968307
Н	-2.914181	5.863345	0.693848	С	-1.451185	9.346325	-0.192097
Н	-3.254970	4.202929	1.190578	С	-1.666464	8.491205	-1.277836
Н	-4.515577	5.441688	1.316792	С	-1.254771	7.139581	-1.325396
Н	-1.433784	3.211189	5.797303	Н	0.121056	7.276545	2.023921
Н	0.015633	4.159156	5.454729	Н	-0.684599	9.602691	1.794827
Н	-1.012828	4.586745	6.830163	Н	-1.802271	10.374794	-0.249922
Н	-3.152342	8.746141	6.191725	Н	-2.193241	8.917142	-2.134225
Н	-2.798333	9.429490	4.598436	Si	-1.689781	6.137263	-2.850653
Н	-4.420512	8.845238	4.959472	С	-2.658561	7.189058	-4.110515
Н	1.611741	-0.150721	4.855790	C	-0.149201	5.475886	-3.754729
Н	1.173314	1.533863	4.512790	C	-2.788908	4.638934	-2.424652
Н	-0.086038	0.311808	4.662970	Н	-2.909755	6.583687	-4.988888
Н	-0.490972	2.336761	-0.485553	Н	-3.595235	7.568222	-3.688372
Н	-0.508634	0.863743	-1.467668	Н	-2.074120	8.048343	-4.456156
Н	-1.713322	1.103133	-0.193846	Н	-3.004862	4.042350	-3.318882
Н	2.775785	-2.449109	-0.471689	Н	-2.299309	3.991697	-1.690812
Н	4.054069	-1.488577	0.274613	Н	-3.742630	4.969793	-1.999600
Η	3.277520	-2.776967	1.195088	Н	-0.434333	4.848776	-4.607999
Н	1.499999	3.681789	3.724572	Н	0.457181	6.306954	-4.130961
В	-0.541034	6.696560	-0.083621	Н	0.473516	4.883887	-3.077704

Complex 2-CNtBu

135

Е	:-257	4.90	6658	8 a.u.
---	-------	------	------	--------

С	7.451171	7.491069	4.128576	С	5.955979	9.436912	4.220840
С	6.821523	8.587511	3.518837	С	5.730119	9.160855	5.572169

С	6.340751	8.085700	6.220929	С	4.953998	4.232929	-2.921388
С	7.188904	7.258035	5.479507	C	4.080615	4.777022	-1.977127
N	7.164906	8.907191	2.161200	C	1.755699	6.975244	2.731461
С	6.465231	8.586510	1.034932	C	2.380459	7.115068	3.977662
N	7.214718	9.102564	0.019631	C	1.882557	8.090996	4.844925
С	8.353429	9.725722	0.505980	C	0.794576	8.898727	4.508397
С	8.322041	9.607808	1.851862	C	0.178680	8.698243	3.269946
С	6.916850	9.072864	-1.389162	C	0.635485	7.738137	2.365950
С	6.528305	10.268652	-2.011749	C	5.395981	3.079660	1.201135
С	6.284615	10.240873	-3.387986	C	6.850270	2.719119	-3.617164
С	6.434660	9.070582	-4.134598	C	3.008260	5.747041	-2.389215
С	6.856243	7.909499	-3.478998	C	3.528967	6.236491	4.386333
С	7.115255	7.884297	-2.107561	C	0.298435	9.963588	5.449804
С	6.392761	11.563020	-1.255010	C	-0.076626	7.515542	1.059190
С	7.611020	6.630750	-1.440883	C	4.078440	14.301316	-3.279758
С	6.179164	9.078212	-5.618416	В	2.727668	14.039251	-3.877898
Pt	4.772385	7.443815	0.952012	Cl	1.200869	14.535373	-2.889040
С	3.611364	8.880119	0.152452	C	5.197583	13.918983	-4.018521
N	2.942020	9.709876	-0.324149	C	5.085418	13.281011	-5.266626
С	2.222043	10.777706	-1.002652	C	3.830116	13.030320	-5.834791
С	5.293684	10.608858	3.550999	C	2.605852	13.374209	-5.225178
С	6.120125	7.840027	7.690338	Si	1.011018	13.091272	-6.169985
С	8.381117	6.596816	3.355310	C	1.349015	12.258018	-7.855845
С	3.315794	6.019874	1.022046	C	-0.210045	11.947080	-5.249690
N	3.293922	4.840137	0.339926	C	0.107037	14.727888	-6.525495
С	2.206547	4.062695	0.711988	Н	8.996947	9.955393	2.617671
С	1.529858	4.764054	1.648410	Н	9.067371	10.191195	-0.154254
N	2.213462	5.958642	1.824451	Н	5.960198	11.156444	-3.882526
С	4.243048	4.387155	-0.640249	Н	7.000457	6.995133	-4.051003
С	5.239849	3.485753	-0.239036	Н	7.669150	6.412046	5.966611
С	6.088023	2.973564	-1.223011	Н	5.067268	9.815980	6.132985
С	5.956289	3.325981	-2.568463	Н	8.706242	5.752967	3.968684

Н	7.889891	6.204828	2.458924	Н	6.271038	2.437809	1.328048
Н	9.276660	7.133543	3.022819	Н	5.516152	3.957750	1.844060
Н	4.754847	11.218518	4.279890	Н	4.522084	2.528429	1.566472
Н	6.022545	11.250954	3.045466	Н	3.219538	6.748611	-2.000803
Н	4.578195	10.272878	2.793279	Н	2.945134	5.815476	-3.477431
Н	5.198428	8.310871	8.043280	Н	2.024920	5.449477	-2.009923
Н	6.064311	6.770438	7.914908	Н	7.817147	2.424579	-3.199483
Н	6.945136	8.252040	8.283974	Н	6.392671	1.819945	-4.047448
Н	6.842134	6.189926	-0.797165	Н	7.032464	3.414812	-4.441318
Н	7.894010	5.886115	-2.187975	Н	5.701792	6.305027	1.577739
Н	8.485693	6.830363	-0.811855	С	2.595166	10.704384	-2.485728
Н	7.369710	12.038325	-1.102223	С	0.719274	10.554298	-0.809184
Н	5.777353	12.270806	-1.817541	С	2.644746	12.107992	-0.371032
Н	5.951364	11.415345	-0.265078	Н	4.241582	14.811347	-2.328865
Н	5.701916	8.150161	-5.948907	Н	6.202619	14.131124	-3.642280
Н	5.539625	9.917971	-5.901792	Н	5.985855	13.025141	-5.823949
Н	7.118818	9.176012	-6.175984	Н	3.826513	12.560381	-6.821987
Н	0.637177	4.533304	2.207458	Н	0.407092	12.099418	-8.393486
Н	2.023481	3.095798	0.270981	Н	1.993566	12.875545	-8.490494
Н	-0.686571	9.299890	3.000411	Н	1.832424	11.281804	-7.737416
Н	2.356828	8.211756	5.816064	Н	-0.839600	14.561234	-7.053193
Н	6.867905	2.274852	-0.928103	Н	-0.105409	15.252302	-5.589253
Н	4.839087	4.522735	-3.963352	Н	0.732055	15.382187	-7.142685
Н	-0.805775	8.307399	0.877000	Н	-1.142153	11.832031	-5.815696
Н	0.621245	7.495199	0.217362	Н	0.220392	10.949703	-5.104660
Н	-0.618279	6.562724	1.051873	Н	-0.455569	12.362694	-4.267814
Н	3.313397	5.180390	4.191813	Н	2.128079	12.920756	-0.889077
Н	4.436692	6.492073	3.829671	Н	2.383664	12.132144	0.691987
Н	3.740665	6.351611	5.451195	Н	3.717386	12.271965	-0.482165
Н	0.591155	9.754472	6.482487	Н	0.187117	11.364964	-1.313390
Н	0.710366	10.944238	5.182848	Н	0.400129	9.606047	-1.250223
Н	-0.791522	10.052086	5.416569	Н	0.451900	10.566297	0.251473

H $2.11/910$ 11.524844 -5.

Н 3.671798 10.806619 -2.626618

Complex 2-PMe₃

133

C 4.624000 4.089000 -1.056000 C 3.732000 5.164000 -1.193000 C 3.556000 5.826000 2.418000

E: -2450.5807641 a.u.

C	3.556000	5.826000	-2.418000
С	4.256000	5.344000	-3.527000
С	5.120000	4.250000	-3.442000
С	5.289000	3.637000	-2.198000
N	3.112000	5.702000	-0.014000
С	1.865000	5.435000	0.492000
N	1.802000	6.219000	1.612000
С	2.966000	6.950000	1.784000
С	3.792000	6.625000	0.767000
Pt	0.385000	4.325000	-0.409000
Р	0.754000	2.274000	0.811000
С	0.722000	6.349000	2.560000
С	-0.374000	7.159000	2.228000
С	-1.378000	7.312000	3.185000
С	-1.312000	6.696000	4.437000
С	-0.179000	5.942000	4.750000
С	0.871000	5.789000	3.840000
С	-0.447000	7.894000	0.919000
С	-2.405000	6.871000	5.455000

С	2.132000	5.112000	4.309000
С	2.672000	7.036000	-2.534000
С	5.892000	3.776000	-4.645000
С	4.926000	3.479000	0.287000
С	-1.170000	3.624000	-1.548000
N	-1.251000	2.619000	-2.483000
С	-2.489000	2.611000	-3.113000
С	-3.212000	3.608000	-2.564000
N	-2.400000	4.220000	-1.622000
С	-0.250000	1.664000	-2.871000
С	0.884000	2.113000	-3.573000
С	1.815000	1.164000	-3.992000
С	1.637000	-0.204000	-3.765000
С	0.473000	-0.614000	-3.118000
С	-0.493000	0.295000	-2.670000
С	1.071000	3.564000	-3.910000
С	-1.751000	-0.252000	-2.042000
С	2.674000	-1.202000	-4.207000
С	-2.893000	5.378000	-0.921000
С	-3.408000	5.233000	0.373000
С	-4.044000	6.339000	0.944000

S28

С	-4.181000	7.550000	0.264000	Н	0.298000	-1.676000	-2.956000
С	-3.631000	7.657000	-1.017000	Н	2.695000	1.505000	-4.532000
С	-2.986000	6.584000	-1.634000	Н	-3.711000	8.598000	-1.557000
С	-3.278000	3.946000	1.134000	Н	-4.452000	6.238000	1.947000
С	-4.925000	8.705000	0.880000	Н	-1.509000	-1.028000	-1.310000
С	-2.406000	6.731000	-3.015000	Н	-2.349000	0.510000	-1.543000
Н	4.789000	6.953000	0.519000	Н	-2.386000	-0.718000	-2.804000
Н	3.087000	7.622000	2.618000	Н	0.182000	3.971000	-4.405000
Н	-0.100000	5.467000	5.727000	Н	1.237000	4.157000	-3.004000
Н	-2.232000	7.940000	2.943000	Н	1.927000	3.697000	-4.573000
Н	4.127000	5.848000	-4.483000	Н	3.123000	-0.914000	-5.163000
Н	5.975000	2.797000	-2.105000	Н	3.486000	-1.273000	-3.475000
Н	2.662000	7.411000	-3.560000	Н	2.247000	-2.202000	-4.320000
Н	1.645000	6.802000	-2.236000	Н	-2.454000	7.773000	-3.342000
Н	3.018000	7.845000	-1.882000	Н	-1.359000	6.412000	-3.036000
Н	5.376000	2.489000	0.174000	Н	-2.942000	6.126000	-3.755000
Н	5.638000	4.099000	0.845000	Н	-2.234000	3.781000	1.419000
Н	4.034000	3.385000	0.908000	Н	-3.873000	3.962000	2.049000
Н	6.037000	2.692000	-4.627000	Н	-3.594000	3.085000	0.535000
Н	5.385000	4.038000	-5.578000	Н	-4.470000	9.664000	0.613000
Н	6.888000	4.235000	-4.676000	Н	-5.964000	8.731000	0.532000
Н	-0.627000	7.208000	0.085000	Н	-4.950000	8.631000	1.971000
Н	-1.258000	8.625000	0.937000	Н	0.145000	5.657000	-1.248000
Н	0.487000	8.427000	0.706000	С	1.950000	1.139000	-0.041000
Н	2.720000	5.805000	4.924000	С	1.455000	2.349000	2.516000
Н	1.883000	4.257000	4.944000	С	-0.716000	1.193000	1.114000
Н	2.773000	4.781000	3.490000	Н	2.198000	0.300000	0.617000
Н	-3.338000	7.207000	4.993000	Н	1.513000	0.762000	-0.965000
Н	-2.587000	5.932000	5.985000	Н	2.856000	1.693000	-0.290000
Н	-2.121000	7.617000	6.208000	Н	1.544000	1.336000	2.918000
Н	-2.726000	1.897000	-3.885000	Н	2.437000	2.824000	2.502000
Н	-4.222000	3.942000	-2.742000	Н	0.786000	2.914000	3.167000

Н	-0.390000	0.175000	1.344000	Н	1.209000	1.909000	5.880000
Н	-1.258000	1.571000	1.984000	Н	1.784000	3.510000	7.651000
Н	-1.371000	1.184000	0.245000	Н	0.067000	4.771000	8.870000
Cl	-1.533000	1.056000	4.692000	Н	-2.298000	4.473000	8.437000
В	-1.055000	2.272000	6.056000	Н	-5.984000	3.760000	7.791000
С	0.400000	2.460000	6.363000	Н	-4.641000	3.692000	8.940000
С	0.736000	3.359000	7.377000	Н	-4.700000	4.974000	7.723000
С	-0.238000	4.083000	8.083000	Н	-5.557000	0.853000	6.953000
С	-1.601000	3.900000	7.819000	Н	-3.957000	0.297000	6.410000
С	-2.104000	3.022000	6.836000	Н	-4.211000	0.739000	8.105000
Si	-3.956000	2.784000	6.685000	Н	-5.688000	3.052000	4.863000
С	-4.904000	3.912000	7.900000	Н	-4.386000	4.247000	4.688000
С	-4.605000	3.203000	4.937000	Н	-4.111000	2.562000	4.201000
С	-4.476000	0.994000	7.074000				

Complex 2-Py

131

E:-2572.5040936 a.u.

С	6.541686	10.464068	-1.886135	Ν	7.438745	9.161666	-0.021343
С	7.064090	9.253397	-1.404632	С	6.641933	8.760129	1.014629
С	7.317791	8.164799	-2.249801	N	7.454755	8.859567	2.106709
С	6.994713	8.299541	-3.602994	С	8.718464	9.308314	1.758041
С	6.454902	9.478296	-4.120036	С	8.711181	9.496538	0.418951
С	6.237334	10.547098	-3.245660	С	7.094812	8.577432	3.471674

С	7.542443	7.383835	4.058328	С	1.816042	8.075609	4.235452
С	7.199109	7.142967	5.390838	С	3.070181	7.972139	-2.499823
С	6.454064	8.062048	6.134869	С	3.813707	3.106522	-3.606161
С	6.051297	9.249773	5.518257	С	1.815299	4.363357	0.845767
С	6.363012	9.536273	4.187412	С	8.095145	3.001674	5.846563
С	8.361758	6.373730	3.299884	С	7.604547	3.765256	6.919960
С	5.926892	10.830206	3.557165	С	6.269731	3.654917	7.330216
С	6.120099	7.778965	7.574614	С	5.323907	2.805719	6.718549
Pt	4.671132	8.252145	0.942367	В	5.853599	1.976295	5.574370
N	5.043314	6.210326	1.589270	Cl	4.745575	0.800894	4.614793
С	7.958480	6.903604	-1.737723	С	7.285409	2.110482	5.144963
С	6.152206	9.613948	-5.589075	Si	3.587663	2.714845	7.422000
С	6.334109	11.643381	-0.976611	С	3.380393	3.924151	8.887630
С	2.657409	7.996022	0.807472	С	2.259035	3.200123	6.139526
Ν	1.690711	8.732541	1.432851	С	3.166618	0.976071	8.067934
С	0.419395	8.330946	1.051487	Н	9.478048	9.832018	-0.260970
С	0.580111	7.324741	0.163683	Н	9.491805	9.449913	2.496038
N	1.946595	7.128031	0.026052	Н	7.492053	6.197655	5.845477
С	1.892816	9.797829	2.376825	Н	5.479861	9.980067	6.087336
С	1.939122	11.118404	1.905217	Н	5.827966	11.477828	-3.632860
С	2.063932	12.141198	2.846779	Н	7.182190	7.460975	-4.270237
С	2.125536	11.880362	4.218740	Н	5.934695	12.495085	-1.532562
С	2.062314	10.552290	4.644319	Н	5.637410	11.399532	-0.168275
С	1.936799	9.491411	3.743596	Н	7.273202	11.957808	-0.507809
С	2.474676	6.128812	-0.861489	Н	9.033416	7.044809	-1.572649
С	2.996844	6.524587	-2.101875	Н	7.529249	6.586559	-0.784307
С	3.446841	5.522725	-2.965528	Н	7.841671	6.089155	-2.456812
С	3.366327	4.167288	-2.635552	Н	6.018786	8.637923	-6.063794
С	2.828103	3.818533	-1.394713	Н	5.245459	10.202383	-5.758923
С	2.374598	4.779334	-0.487994	Н	6.970745	10.122939	-6.112360
С	1.842298	11.429654	0.436979	Н	5.132976	10.660225	2.821941
С	2.217649	13.008024	5.212525	Н	5.545235	11.516370	4.316550

Н	6.754548	11.324581	3.036675	Н	2.828630	13.831145	4.830143
Н	9.410387	6.686875	3.223105	Н	1.224197	13.417035	5.433443
Н	8.339882	5.408430	3.810923	Н	2.650148	12.674175	6.159708
Н	7.991445	6.230340	2.280543	Н	4.413727	9.718648	0.479942
Н	5.246733	8.348107	7.906155	Н	7.743237	1.529447	4.342397
Н	5.922921	6.714393	7.727808	Н	9.151742	3.105445	5.585456
Н	6.957388	8.050514	8.229058	Н	8.281944	4.415357	7.472688
Н	-0.135987	6.734469	-0.385421	Н	5.972838	4.254851	8.195307
Н	-0.467076	8.797663	1.450593	Н	2.361679	3.862449	9.287556
Н	2.764176	2.769298	-1.115640	Н	4.071526	3.692295	9.705084
Н	3.856858	5.813912	-3.930138	Н	3.555825	4.962900	8.585872
Н	2.105234	13.170620	2.496845	Н	2.142843	0.928048	8.457503
Н	2.101291	10.329999	5.708253	Н	3.268079	0.239840	7.265359
Н	1.999790	3.302807	1.028343	Н	3.852361	0.691871	8.873249
Н	2.270198	4.927652	1.664898	Н	1.251401	3.123472	6.565254
Н	0.733135	4.526081	0.903929	Н	2.403645	4.232277	5.799464
Н	2.110534	8.478002	-2.347749	Н	2.316246	2.542823	5.267081
Н	3.816784	8.504143	-1.899129	C	4.951998	5.866699	2.889235
Н	3.344394	8.069152	-3.552571	C	5.235403	4.588324	3.350427
Н	4.598125	3.475764	-4.273071	С	5.630448	3.616290	2.433463
Н	4.195104	2.222651	-3.086822	С	5.718843	3.966474	1.088346
Н	2.978596	2.776940	-4.236229	C	5.416138	5.267085	0.706205
Н	1.911531	12.506501	0.265079	Н	4.667327	6.662586	3.568101
Н	2.643960	10.937449	-0.123006	Н	5.175692	4.344529	4.409042
Н	0.893019	11.082559	0.013459	Н	5.859747	2.615663	2.786412
Н	2.485908	7.402380	3.695142	Н	6.014904	3.243851	0.334782
Н	2.052744	8.009999	5.299530	Н	5.452294	5.576392	-0.332997
Н	0.798309	7.691740	4.097425				

Complex 2-MeCN

126

E:-2457.0147322 a.u.

С	6.567000	10.565000	-1.901000	С	7.099000
С	7.096000	9.356000	-1.427000	С	1.524000
С	7.356000	8.269000	-2.273000	С	1.884000
С	7.035000	8.411000	-3.624000	С	1.367000
С	6.470000	9.584000	-4.132000	С	0.513000
С	6.243000	10.649000	-3.257000	С	0.171000
N	7.430000	9.238000	-0.031000	С	0.661000
С	6.678000	8.612000	0.918000	С	2.789000
N	7.406000	8.744000	2.062000	С	-0.019000
С	8.585000	9.440000	1.830000	С	0.266000
С	8.598000	9.748000	0.512000	С	7.034000
Pt	4.897000	7.658000	0.679000	С	6.282000
С	3.234000	6.509000	0.455000	С	5.980000
N	3.142000	5.345000	-0.251000	С	6.409000
С	1.871000	4.799000	-0.165000	С	7.158000
С	1.144000	5.631000	0.614000	С	7.489000
N	1.984000	6.670000	0.983000	С	5.806000
С	4.183000	4.721000	-1.021000	С	6.106000
С	4.922000	3.685000	-0.432000	С	8.302000
С	5.879000	3.040000	-1.219000	С	7.957000
С	6.095000	3.393000	-2.553000	С	6.136000
С	5.336000	4.431000	-3.097000	С	6.371000
С	4.371000	5.114000	-2.353000	Н	9.288000
С	4.700000	3.282000	1.000000	Н	9.320000
С	3.576000	6.236000	-2.961000	Н	5.783000

С	7.099000	2.649000	-3.394000
С	1.524000	7.754000	1.808000
С	1.884000	7.784000	3.162000
С	1.367000	8.818000	3.947000
С	0.513000	9.791000	3.424000
С	0.171000	9.715000	2.071000
С	0.661000	8.706000	1.239000
С	2.789000	6.743000	3.761000
С	-0.019000	10.904000	4.288000
С	0.266000	8.656000	-0.213000
С	7.034000	8.257000	3.361000
С	6.282000	9.086000	4.204000
С	5.980000	8.612000	5.483000
С	6.409000	7.360000	5.928000
С	7.158000	6.566000	5.054000
С	7.489000	6.994000	3.767000
С	5.806000	10.438000	3.750000
С	6.106000	6.888000	7.325000
С	8.302000	6.125000	2.848000
С	7.957000	6.991000	-1.755000
С	6.136000	9.718000	-5.593000
С	6.371000	11.763000	-1.011000
Η	9.288000	9.647000	2.621000
Н	9.320000	10.276000	-0.091000

Н	7.231000	7.579000	-4.297000	Η	2.809000	6.831000	4.850000
Н	7.501000	5.587000	5.383000	Н	0.107000	10.682000	5.351000
Н	5.398000	9.244000	6.150000	Н	0.502000	11.846000	4.082000
Н	8.585000	5.194000	3.344000	Η	-1.083000	11.080000	4.100000
Н	7.736000	5.877000	1.944000	Н	5.402000	2.499000	1.295000
Н	9.221000	6.627000	2.524000	Η	4.834000	4.136000	1.673000
Н	5.290000	10.960000	4.559000	Н	3.685000	2.901000	1.163000
Н	6.638000	11.069000	3.417000	Н	3.854000	7.197000	-2.515000
Н	5.113000	10.344000	2.907000	Н	3.755000	6.301000	-4.036000
Н	5.224000	7.388000	7.735000	Н	2.500000	6.105000	-2.806000
Н	5.931000	5.809000	7.355000	Н	7.899000	2.222000	-2.782000
Н	6.945000	7.099000	8.000000	Н	6.621000	1.820000	-3.932000
Н	7.234000	6.436000	-1.148000	Н	7.555000	3.301000	-4.145000
Н	8.266000	6.349000	-2.583000	Н	5.663000	6.326000	0.920000
Н	8.835000	7.181000	-1.128000	Ν	3.894000	9.468000	0.375000
Н	7.311000	12.314000	-0.881000	С	3.383000	10.500000	0.257000
Н	5.649000	12.453000	-1.457000	С	2.762000	11.794000	0.111000
Н	6.024000	11.483000	-0.013000	Н	2.935000	12.207000	-0.899000
Н	5.981000	8.743000	-6.063000	Н	1.681000	11.708000	0.239000
Н	5.234000	10.320000	-5.732000	Н	3.168000	12.484000	0.856000
Н	6.948000	10.219000	-6.135000	С	2.555000	13.820000	-2.520000
Н	0.117000	5.590000	0.942000	С	3.731000	14.162000	-3.194000
Н	1.610000	3.884000	-0.671000	С	4.076000	13.580000	-4.422000
Н	-0.500000	10.459000	1.645000	С	3.233000	12.642000	-5.035000
Н	1.632000	8.853000	5.002000	С	2.020000	12.188000	-4.484000
Н	6.464000	2.237000	-0.777000	Si	0.971000	10.979000	-5.461000
Н	5.492000	4.719000	-4.135000	С	0.770000	9.311000	-4.553000
Н	-0.104000	9.627000	-0.552000	В	1.658000	12.796000	-3.152000
Н	1.108000	8.380000	-0.852000	Cl	0.095000	12.287000	-2.227000
Н	-0.529000	7.922000	-0.389000	С	-0.766000	11.666000	-5.821000
Н	2.461000	5.730000	3.506000	С	1.771000	10.585000	-7.150000
Н	3.814000	6.857000	3.390000	Н	2.323000	14.358000	-1.598000

Н	4.397000	14.925000	-2.782000	Н	-1.3
Η	4.985000	13.896000	-4.932000	Н	-1.2
Η	3.549000	12.271000	-6.014000	Н	-0.6
Η	1.130000	9.902000	-7.720000	Н	0.1
Η	1.906000	11.491000	-7.751000	Н	1.7
Η	2.750000	10.106000	-7.042000	Н	0.3

Н	-1.374000	10.943000 -6.377000	
Н	-1.280000	11.911000 -4.888000	
Н	-0.697000	12.582000 -6.417000	
Н	0.148000	8.615000 -5.128000	
Н	1.749000	8.845000 -4.393000	
Н	0.302000	9.468000 -3.577000	

172

E:-3036.431158 a.u.

Complex 2-PCy₃

С	4.826479	4.065155	-0.219219	C	0.163326	7.221340	5.266869
С	3.812015	4.957114	-0.616690	C	0.467271	6.988244	3.920783
С	3.485516	5.132902	-1.967518	C	4.196958	6.173731	4.245172
С	4.224547	4.427635	-2.921866	C	0.778002	7.418339	7.709306
С	5.248781	3.548703	-2.569498	C	-0.664612	7.016579	2.924732
С	5.533812	3.385586	-1.211849	C	2.352205	6.014450	-2.396200
Ν	2.913531	5.435373	0.414287	C	6.032212	2.808926	-3.620398
С	2.988884	6.510236	1.281233	C	5.130913	3.802432	1.229466
Ν	2.069819	6.169964	2.258963	C	6.194202	8.997719	0.757566
С	1.441135	4.962246	1.970718	Ν	7.104499	9.246914	1.757513
С	1.959305	4.512901	0.816836	C	8.322829	9.671917	1.247018
Pt	4.370193	8.053841	1.031926	C	8.194609	9.683264	-0.095111
Р	2.767007	10.041714	0.911728	Ν	6.903390	9.275411	-0.387996
С	1.428705	9.911037	-0.408105	C	6.985071	9.009118	3.171364
С	1.799080	6.692996	3.578724	C	6.618674	10.066966	4.019129
С	2.798559	6.606092	4.567908	C	6.617781	9.835206	5.395371
С	2.440002	6.857791	5.892258	C	7.008401	8.608804	5.940398
С	1.127865	7.156794	6.269575	С	7.418015	7.600973	5.067165

С	7.426533	7.778296	3.680307	Н	8.148437	5.781877	3.342673
С	6.307858	11.432991	3.476414	Н	7.235239	6.462151	1.979606
С	7.947133	6.694786	2.776794	Н	8.880918	6.999716	2.290411
С	7.021962	8.402267	7.432129	Н	5.986389	12.104608	4.275828
С	6.493882	9.150217	-1.769281	Н	7.189024	11.877665	3.000057
С	6.385912	7.860047	-2.315657	Н	5.522629	11.399591	2.719311
С	5.978724	7.744701	-3.643519	Н	6.047809	8.635047	7.875539
С	5.726358	8.865965	-4.442259	Н	7.273975	7.370867	7.692494
С	5.974619	10.127726	-3.904182	Н	7.757628	9.056064	7.914393
С	6.405051	10.292869	-2.580718	Н	6.201695	6.450281	-0.681085
С	6.836390	6.652300	-1.545696	Н	6.827624	5.769405	-2.185779
С	5.286363	8.720466	-5.873691	Н	7.860136	6.790194	-1.176020
С	6.878378	11.659417	-2.167405	Н	7.870990	11.837078	-2.600912
С	1.822856	10.144233	2.560268	Н	6.227923	12.432393	-2.587197
С	3.293876	11.883975	0.748337	Н	6.961607	11.787218	-1.088791
Cl	2.334887	13.487035	-4.227705	Н	4.536007	7.930451	-5.983840
В	3.966103	13.316535	-5.154293	Н	4.869058	9.658170	-6.248669
С	4.046422	12.650442	-6.506437	Н	6.134632	8.455100	-6.516845
Si	2.591728	12.158767	-7.579936	Н	0.703188	4.540232	2.632615
С	1.491080	13.660858	-7.980543	Н	1.768769	3.617583	0.247074
С	5.205277	13.868504	-4.514813	Н	-0.868363	7.443586	5.531651
С	6.417727	13.701456	-5.186061	Н	3.209358	6.781700	6.657192
С	6.499062	13.032826	-6.416316	Н	6.316719	2.692768	-0.911050
С	5.346133	12.549700	-7.047027	Н	3.968660	4.555469	-3.971107
С	3.177844	11.439037	-9.250859	Н	-1.239262	7.942504	3.028427
С	1.460941	10.837081	-6.794672	Н	-0.324606	6.944434	1.892579
Н	9.151363	9.918638	1.891618	Н	-1.362169	6.190101	3.105078
Н	8.889249	9.944999	-0.876607	Н	4.197089	5.201561	3.740451
Н	5.857902	11.013953	-4.526063	Н	4.693526	6.883392	3.575354
Н	5.888485	6.749060	-4.073050	Н	4.791564	6.085419	5.156344
Н	7.757962	6.650219	5.472378	Н	1.337065	6.760373	8.381571
Н	6.328469	10.646922	6.059462	Н	1.020508	8.450522	7.989613

Н	-0.288907	7.269702	7.896505	Н	1.359961	12.481393	4.961141
Н	5.944456	3.079665	1.326822	Н	0.462326	11.452043	6.070462
Н	5.425730	4.722260	1.743942	C	2.808434	10.398087	3.713357
Н	4.259723	3.400341	1.759445	Н	2.854626	10.702665	5.849979
Н	2.595476	7.064715	-2.221862	Н	1.724035	9.464168	5.322426
Н	2.143906	5.892460	-3.461366	Н	3.315580	11.358199	3.554684
Н	1.434115	5.796917	-1.841267	Н	3.588700	9.627967	3.714948
Н	6.908346	3.388243	-3.936574	Н	1.410552	9.137211	2.691990
Н	6.396047	1.847546	-3.246420	C	2.277387	12.832704	0.079494
Н	5.428241	2.621986	-4.512805	Н	3.371475	12.186648	1.801704
Н	5.330083	6.822172	1.168427	C	2.704677	14.294257	0.269017
Н	5.215005	14.428609	-3.577686	Н	2.223654	12.628000	-0.995978
Н	7.341025	14.102249	-4.758866	Н	1.268156	12.703554	0.478866
Н	7.464301	12.918960	-6.906812	C	4.100548	14.545994	-0.297096
Н	5.485508	12.085462	-8.026678	Н	1.973594	14.947761	-0.220339
Н	2.312530	11.171108	-9.868230	Н	2.686234	14.543595	1.341166
Н	3.775871	12.163507	-9.813775	C	5.113395	13.564260	0.291356
Н	3.784554	10.535961	-9.119974	Н	4.068778	14.427251	-1.387239
Н	0.634933	13.377280	-8.604433	Н	4.412580	15.578733	-0.100945
Н	1.114918	14.108843	-7.055705	C	4.663199	12.108314	0.112216
Н	2.066094	14.424954	-8.514456	Н	6.095551	13.712304	-0.171356
Н	0.631385	10.581572	-7.464870	Н	5.240750	13.768000	1.365859
Н	2.016592	9.918115	-6.576915	Н	4.603940	11.870576	-0.954960
Н	1.043517	11.217483	-5.858267	Н	5.402310	11.427226	0.543550
С	0.668033	11.156024	2.609882	C	0.470890	8.733872	-0.219730
С	-0.028755	11.159657	3.975645	Н	0.838590	10.828271	-0.296243
Н	1.057807	12.164755	2.431374	C	-0.654445	8.783727	-1.262289
Н	-0.064700	10.956896	1.819904	Н	1.023043	7.789259	-0.308459
С	0.965413	11.463815	5.095875	Н	0.037284	8.756990	0.785036
Н	-0.842762	11.894551	3.969981	C	-0.108042	8.824230	-2.690838
Н	-0.490568	10.179175	4.158602	Н	-1.326041	7.925703	-1.129719
С	2.114872	10.456631	5.077938	Н	-1.261110	9.682670	-1.081983

С	0.912242	9.948695	-2.875689	Н	1.352567	9.909095	-3.876013
Н	0.361292	7.859927	-2.924690	Н	0.403995	10.919982	-2.812946
Н	-0.931258	8.944397	-3.404869	Н	2.655428	9.023246	-1.950315
С	2.025837	9.912709	-1.822255	Н	2.687391	10.770014	-1.977913

Complex 2-Cl

121

E: -2339.455327 a.u.

С	5.993187	10.736310	-1.400530	Pt	4.2706
С	6.692801	9.696844	-0.771515	С	2.4906
С	7.296671	8.658839	-1.495898	Ν	1.4741
С	7.180636	8.688217	-2.887872	С	0.4038
С	6.495867	9.706318	-3.554215	С	0.7420
С	5.903540	10.716396	-2.793857	Ν	2.0177
Ν	6.876580	9.755417	0.650396	С	1.4276
С	6.012795	9.299478	1.607504	С	0.7733
Ν	6.617809	9.642802	2.781607	С	0.6153
С	7.825311	10.285951	2.558730	С	1.0878
С	7.991019	10.358546	1.218620	С	1.7490
С	6.101656	9.453455	4.113226	С	1.9288
С	6.533976	8.351109	4.867155	С	2.6823
С	6.082538	8.248228	6.183762	С	2.7109
С	5.244254	9.208239	6.760693	С	3.2774
С	4.851703	10.294359	5.975419	С	3.7955
С	5.265054	10.440571	4.650024	С	3.7389
С	7.451104	7.311649	4.284402	С	3.1891
С	4.822827	11.623794	3.832582	С	0.2591
С	4.787539	9.062681	8.184072	С	0.9010

Pt	4.270669	8.313219	1.336713
С	2.490610	7.390147	1.095791
N	1.474140	7.312375	2.002738
С	0.403890	6.585564	1.505444
С	0.742092	6.198708	0.255355
N	2.017797	6.693013	0.016757
С	1.427693	7.905120	3.313791
С	0.773394	9.136480	3.459880
С	0.615301	9.639921	4.751134
С	1.087842	8.954044	5.874224
С	1.749086	7.738409	5.682325
С	1.928876	7.188998	4.409335
С	2.682359	6.467921	-1.235434
С	2.710954	7.498553	-2.184772
С	3.277403	7.224144	-3.431641
С	3.795588	5.967282	-3.745375
С	3.738918	4.965583	-2.774640
С	3.189126	5.187904	-1.510696
С	0.259188	9.894288	2.265331
С	0.901061	9.517346	7.257673

С	2.627637	5.869790	4.230845	Н	5.561661	10.299640	-5.411776
С	2.151679	8.858821	-1.876355	Н	7.322404	10.205027	-5.487684
С	4.421822	5.699418	-5.089114	Н	4.212935	11.300321	2.982256
С	3.169492	4.094166	-0.480221	Н	4.226811	12.309128	4.440989
С	8.027863	7.545610	-0.801841	Н	5.675093	12.183379	3.428963
С	6.428933	9.733162	-5.059254	Н	8.394454	7.750603	3.937031
С	5.352874	11.836004	-0.600105	Н	7.689264	6.552931	5.034118
Cl	5.444950	6.133397	1.426412	Н	6.984481	6.815919	3.425288
С	5.394091	5.539385	9.371258	Н	4.124572	8.198321	8.310302
С	5.118855	6.221094	10.562330	Н	5.631774	8.885734	8.857004
С	3.826186	6.618443	10.962164	Н	4.256382	9.955107	8.527150
В	2.716242	6.256160	10.006266	Н	0.207796	5.627102	-0.486686
Cl	0.923558	6.709215	10.360590	Н	-0.483574	6.414302	2.093617
С	4.361580	5.190292	8.486109	Н	4.138227	3.978763	-3.000930
С	3.028686	5.515752	8.739452	Н	3.307402	8.016819	-4.176115
Si	3.607133	7.480894	12.605773	Н	0.100543	10.590321	4.882971
С	5.286512	7.726918	13.491727	Н	2.125773	7.195632	6.547016
С	2.835679	9.218799	12.440244	Н	3.595669	3.174245	-0.889423
С	2.509231	6.483423	13.805667	Н	3.764863	4.397656	0.388821
Н	8.781758	10.774814	0.614907	Н	2.155899	3.871867	-0.129812
Н	8.440935	10.626596	3.376005	Н	1.116030	8.798647	-1.523321
Н	6.384971	7.391868	6.782363	Н	2.737172	9.335756	-1.082216
Н	4.203628	11.054657	6.406376	Н	2.175514	9.497600	-2.763229
Н	5.361944	11.516436	-3.295061	Н	4.072167	6.410644	-5.843694
Н	7.641683	7.888355	-3.463972	Н	5.514370	5.784125	-5.037585
Н	4.884728	12.573801	-1.257327	Н	4.193664	4.689143	-5.444379
Н	4.587485	11.426393	0.067845	Н	-0.201460	10.836054	2.575999
Н	6.083807	12.355334	0.029558	Н	1.074870	10.122769	1.570292
Н	8.472479	6.863170	-1.531253	Н	-0.490050	9.322633	1.704890
Н	8.829256	7.926577	-0.159016	Н	3.517436	5.974970	3.600320
Н	7.342848	6.975749	-0.160766	Н	2.935497	5.469338	5.198971
Н	6.365387	8.723041	-5.474999	Н	1.975730	5.132099	3.747446

Η	-0.032558	10.084719	7.333555
Н	0.890920	8.730527	8.016572
Н	1.719921	10.200964	7.512153
Н	3.524278	9.684028	1.291731
Н	2.275675	5.187577	8.020454
Н	4.628498	4.637674	7.581085
Н	6.420642	5.255789	9.141780
Н	5.974145	6.444302	11.206386
Н	5.138367	8.230636	14.454445

Η	5.782148	6.769881	13.688448
Н	5.971090	8.340787	12.895903
Н	2.373556	7.006554	14.760396
Н	1.525503	6.313316	13.358089
Н	2.958743	5.505668	14.011463
Н	2.696606	9.690057	13.421202
Н	3.478472	9.870066	11.837614
Н	1.862730	9.152610	11.944827

Complex 3-Cl

97

E: -1982.960561 a.u.

С	-0.524605	0.756065	-0.043048	С	-2.456564	4.746686	3.496006
С	-0.230449	0.931565	1.315800	С	-3.493010	5.396342	2.811594
С	0.795843	0.220275	1.956357	С	-3.938817	6.621313	3.311757
С	1.538704	-0.677566	1.187205	С	-3.385442	7.192127	4.460093
С	1.284826	-0.877318	-0.171201	С	-2.346675	6.516038	5.103474
С	0.250593	-0.153216	-0.765997	С	-1.863501	5.288323	4.645201
N	-1.081428	1.778762	2.106148	С	-4.099921	4.800475	1.571193
С	-1.039239	3.141205	2.200539	С	-3.921226	8.487113	5.012367
N	-2.058728	3.438047	3.058922	С	-0.746942	4.577970	5.356783
С	-2.714131	2.292582	3.487886	С	1.104289	0.421403	3.413045
С	-2.100587	1.249344	2.885882	С	2.119258	-1.839802	-0.974987
Pt	0.202039	4.452536	1.294935	С	-1.639508	1.514965	-0.706748
Cl	2.051612	3.874188	2.832345	С	1.348407	5.803175	0.323740

N	1.939085	5.657361	-0.898583	Н	-0.458732	5.121472	6.260226
С	2.637630	6.798220	-1.267211	Н	-1.038978	3.563378	5.650381
С	2.482991	7.686884	-0.260485	Н	-3.132737	9.075998	5.490134
N	1.697497	7.068863	0.703005	Н	-4.376728	9.100017	4.228892
С	1.898221	4.491090	-1.734993	Н	-4.692450	8.302536	5.770570
С	2.903846	3.523474	-1.593662	Н	-1.410605	2.585860	-0.729015
С	2.896708	2.449437	-2.485823	Н	-1.784299	1.169884	-1.733510
С	1.935942	2.327408	-3.492418	Н	-2.586454	1.394755	-0.168779
С	0.948706	3.309858	-3.591265	Н	1.896735	-0.259127	3.735176
С	0.911049	4.405190	-2.725592	Н	1.438865	1.451633	3.583061
С	3.946882	3.634644	-0.517681	Н	0.228933	0.245989	4.047869
С	-0.160390	5.453331	-2.850253	Н	1.586010	-2.187357	-1.864838
С	1.985992	1.182185	-4.469602	Н	3.049689	-1.366713	-1.312185
С	1.340406	7.745494	1.919918	Н	2.400367	-2.717315	-0.384292
С	2.298108	7.842494	2.941579	Н	2.848721	8.693283	-0.132500
С	1.967741	8.595276	4.069697	Н	3.172386	6.860360	-2.201652
С	0.736382	9.242269	4.194863	Н	2.699790	8.679536	4.870295
С	-0.183587	9.123966	3.152164	Н	-1.144497	9.627782	3.226695
С	0.095472	8.383121	2.001372	Н	0.188544	3.229081	-4.365738
С	3.629675	7.153425	2.840407	Н	3.669266	1.689469	-2.390719
С	0.409387	10.035264	5.433043	Н	3.485414	6.068199	2.782068
С	-0.910334	8.280523	0.889161	Н	4.187061	7.465213	1.950102
Н	-3.543078	2.335730	4.176334	Н	4.243620	7.374763	3.717270
Н	-2.285432	0.187864	2.931234	Н	-0.475141	8.559835	-0.076758
Н	2.337173	-1.237909	1.669304	Н	-1.272537	7.250844	0.798237
Н	0.031117	-0.301824	-1.820827	Н	-1.765678	8.933511	1.079510
Н	-4.743722	7.137023	2.791836	Н	-0.405092	10.742909	5.252745
Н	-1.897930	6.950324	5.994109	Н	0.099164	9.375978	6.252960
Н	-4.889448	5.445437	1.177029	Н	1.276960	10.601192	5.787215
Н	-3.338304	4.670399	0.794706	Н	-0.834792	5.221510	-3.678544
Н	-4.534806	3.813404	1.763607	Н	-0.749184	5.513279	-1.928395
Н	0.135649	4.484539	4.712306	Н	0.262693	6.448472	-3.027328

Η	3.489180	3.606629	0.478492	Н	1.008547	1.000729	-4.926071
Н	4.664859	2.813691	-0.590137	Н	2.692550	1.388580	-5.283180
Н	4.501954	4.576693	-0.591917	Н	-0.965512	4.820714	0.325322
Н	2.312479	0.256795	-3.985671				

4-CNtBu

38

E: -591.956657 a.u.

С	-1.440025	0.243921	4.745198	
Si	-1.868390	0.121087	2.898303	
С	-2.849125	1.682542	2.421304	
С	-2.998810	-1.392761	2.661976	
С	-0.317311	-0.034619	1.842242	
В	-0.279579	-0.143419	0.332665	
С	-1.535096	-0.130120	-0.536616	
С	0.940642	-0.056361	2.462829	
С	2.147682	-0.168618	1.759624	
С	2.192096	-0.269606	0.364675	
С	1.028146	-0.263232	-0.399907	
Н	1.129729	-0.344617	-1.481971	
Н	1.012312	0.016702	3.549013	
Н	3.080465	-0.177212	2.320094	
Н	3.167151	-0.354142	-0.115846	
Η	-3.915499	-1.298717	3.254987	
Н	-3.288053	-1.522171	1.613890	
Н	-2.484375	-2.306704	2.976297	
Н	-3.768315	1.770760	3.011384	

Н	-2.246845	2.579929	2.596363
Н	-3.128877	1.676662	1.362556
Н	-2.355133	0.330891	5.341163
Н	-0.900912	-0.643453	5.092669
Н	-0.819587	1.120421	4.958648
Ν	-2.459616	-0.131215	-1.253980
С	-3.573591	-0.053488	-2.159937
С	-4.822773	-0.545517	-1.416251
С	-3.734145	1.410561	-2.595668
С	-3.261388	-0.954080	-3.363344
Н	-4.095739	-0.915840	-4.069393
Н	-2.356442	-0.618326	-3.876760
Н	-3.119677	-1.990962	-3.047404
Н	-5.686223	-0.488599	-2.085015
Н	-4.701188	-1.582745	-1.093095
Н	-5.023055	0.072913	-0.537390
Н	-4.576009	1.493190	-3.289176
Η	-3.929617	2.053986	-1.733722
Н	-2.832066	1.767595	-3.099706

4-PMe₃

36

E: -467.633663 a.u.

С	-1.312515	0.209540	4.888458	Н	-3.924889	1.074868	3.440576
Si	-1.780251	-0.161456	3.081580	Н	-2.748598	2.111750	2.623776
С	-3.155916	1.095575	2.660037	Н	-3.663368	0.900114	1.710430
С	-2.540660	-1.909680	3.072090	Н	-2.215036	0.199764	5.509840
С	-0.276927	-0.044226	1.949091	Н	-0.623833	-0.535011	5.300000
В	-0.160444	0.018526	0.442555	Н	-0.845369	1.194259	4.991651
Р	-1.628915	0.152027	-0.835771	С	-1.052875	-0.184894	-2.555918
С	0.965599	-0.072946	2.615839	С	-3.061007	-1.002227	-0.656688
С	2.209401	-0.047137	1.975192	С	-2.399043	1.827881	-0.976387
С	2.315150	0.006157	0.585066	Н	-1.894988	-0.131754	-3.250429
С	1.179524	0.039040	-0.226515	Н	-0.301363	0.553844	-2.840003
Н	1.355076	0.075878	-1.301761	Н	-0.601300	-1.178070	-2.596409
Н	0.990113	-0.116321	3.705379	Н	-3.169703	1.841729	-1.752237
Н	3.112740	-0.071082	2.581161	Н	-2.834824	2.109807	-0.016713
Н	3.310542	0.019757	0.139264	Н	-1.611938	2.543796	-1.224425
Н	-3.424461	-1.960439	3.718231	Н	-3.777650	-0.847521	-1.467777
Η	-2.834070	-2.240284	2.071329	Н	-2.686536	-2.027992	-0.688002
Η	-1.807765	-2.631282	3.448330	Н	-3.555896	-0.840275	0.301515

4-Py

1	34	4	

E: -5	89.558907	a.u.
-------	-----------	------

С	-1.293755	-0.614254	4.632520	
Si	-1.869695	-0.054587	2.907714	
С	-2.928150	1.510056	3.200064	
С	-3.009279	-1.433613	2.249190	
С	-0.383774	0.234069	1.778496	
В	-0.268358	0.148243	0.277754	
N	-1.504124	0.006032	-0.641399	
С	0.855388	0.405589	2.431464	
С	2.086434	0.503208	1.774822	
С	2.186290	0.406302	0.382015	
С	1.058520	0.214539	-0.411574	
Н	1.200295	0.190387	-1.494204	
Н	0.888249	0.450533	3.521015	
Н	2.988192	0.645229	2.366495	
Н	3.173751	0.492326	-0.073051	
Н	-3.806845	-1.640910	2.971548	
Н	-3.487041	-1.184810	1.296776	

Н	-2.439682	-2.357756	2.105836
Η	-3.664232	1.323482	3.990529
Н	-2.296182	2.344138	3.522732
Н	-3.483501	1.838306	2.314880
Н	-2.161879	-0.881780	5.245292
Н	-0.640898	-1.490602	4.571021
Н	-0.749143	0.173867	5.162488
С	-1.488709	-0.883320	-1.661660
С	-2.550246	-1.006286	-2.540543
С	-3.680353	-0.208174	-2.364528
С	-3.693035	0.702864	-1.309619
С	-2.590504	0.793317	-0.477190
Н	-0.593240	-1.489476	-1.727633
Н	-2.491166	-1.733094	-3.343356
Н	-4.529618	-0.293011	-3.034953
Н	-4.542210	1.354552	-1.135334
Н	-2.523951	1.506059	0.335235

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2011

4-MeCN

29

E: -474.055910 a.u.

С	-1.475959	0.000595	4.731483	
Si	-1.849691	-0.000137	2.869055	
С	-2.901636	1.543019	2.489517	
С	-2.901348	-1.543774	2.490678	
С	-0.264644	-0.000351	1.856535	
В	-0.164380	-0.000873	0.353544	
Ν	-1.390047	-0.001325	-0.488140	
С	0.977939	-0.000002	2.513305	
С	2.208051	-0.000117	1.844232	
С	2.294151	-0.000601	0.446144	
С	1.154351	-0.000995	-0.353474	
Η	1.283137	-0.001364	-1.435770	
Η	1.013787	0.000383	3.603718	
Н	3.124144	0.000181	2.431234	
Н	3.285202	-0.000663	-0.008668	

-3.835480	-1.538220	3.063643
-3.160664	-1.612006	1.428881
-2.350294	-2.453273	2.751206
-3.835811	1.537689	3.062415
-2.350773	2.452804	2.749451
-3.160881	1.610465	1.427653
-2.407977	0.000715	5.307271
-0.902836	-0.884460	5.026376
-0.903012	0.885982	5.025720
-2.330635	-0.001533	-1.166400
-3.505966	-0.002416	-2.011246
-3.199768	-0.000520	-3.061470
-4.111915	-0.894459	-1.822124
-4.114845	0.887126	-1.819800
	-3.835480 -3.160664 -2.350294 -3.835811 -2.350773 -3.160881 -2.407977 -0.902836 -0.903012 -2.330635 -3.505966 -3.199768 -4.111915 -4.114845	-3.835480-1.538220-3.160664-1.612006-2.350294-2.453273-3.8358111.537689-2.3507732.452804-3.1608811.610465-2.4079770.000715-0.902836-0.884460-0.9030120.885982-2.330635-0.001533-3.505966-0.002416-3.199768-0.894459-4.1148450.887126

4-PCy₃

-	_
1	
	•

E: -1053.522691 a.u.

С	-0.983627	1.028759	4.986558	Н	-2.973396	-0.540830	-3.630031
Si	-1.658555	0.223235	3.393670	Н	-2.496806	1.149294	-3.509173
С	-3.208611	1.273718	3.013058	С	-0.746309	-1.296118	-5.243046
С	-2.223793	-1.522518	3.914100	Н	-2.129232	0.286270	-5.792222
С	-0.320278	0.169247	2.049909	Н	-0.639326	0.845885	-5.045047
В	-0.292135	0.040899	0.532476	С	0.202806	-1.645993	-4.097960
Р	-1.829942	-0.050807	-0.731281	Н	-1.521943	-2.071601	-5.321202
С	0.964215	0.243838	2.638481	Н	-0.212533	-1.292085	-6.200690
С	2.177152	0.220346	1.945305	С	-0.518544	-1.601535	-2.747168
С	2.208209	0.133646	0.555962	Н	0.637625	-2.641277	-4.247373
С	1.028633	0.046643	-0.183588	Н	1.043199	-0.937687	-4.085391
Η	1.162823	-0.002898	-1.262481	Н	-1.311469	-2.361603	-2.757408
Η	1.049943	0.335809	3.721113	Н	0.173850	-1.863146	-1.941847
Η	3.106653	0.285097	2.506948	С	-4.113055	1.754508	-1.398221
Η	3.174930	0.138155	0.050539	Н	-3.034682	1.586076	0.443803
Η	-2.945223	-1.470571	4.737492	С	-4.788291	3.064145	-0.969226
Η	-2.684414	-2.087451	3.098922	Н	-3.923178	1.804453	-2.474521
Η	-1.358186	-2.097354	4.260255	Н	-4.796169	0.913841	-1.248246
Η	-3.817860	1.332892	3.922518	С	-3.868515	4.264260	-1.204888
Н	-2.921990	2.296940	2.746810	Н	-5.729737	3.190533	-1.517334
Η	-3.852744	0.879673	2.223741	Н	-5.051373	3.006597	0.096307
Η	-1.812127	1.179880	5.687958	С	-2.520467	4.078801	-0.505500
Η	-0.237175	0.410737	5.494818	Н	-3.703305	4.382324	-2.285652
Η	-0.532097	2.005685	4.785733	Н	-4.350958	5.187165	-0.861998
С	-1.146231	-0.218727	-2.491776	С	-1.849608	2.754963	-0.891011
С	-3.013950	-1.516246	-0.534466	Н	-1.849393	4.913449	-0.740173
С	-2.795574	1.568974	-0.627141	Н	-2.669441	4.096964	0.582915
С	-2.107968	0.137074	-3.635331	Н	-1.582178	2.781864	-1.957097
Н	-0.338699	0.525211	-2.494062	Н	-0.916445	2.624019	-0.332279
С	-1.406347	0.059702	-4.999304	С	-4.209532	-1.300266	0.406836

Н	-3.403459	-1.688571	-1.549217	Н	-4.098586	-3.732462	1.842096
С	-5.137629	-2.521679	0.392676	Н	-5.065722	-4.666466	0.708933
Н	-3.840268	-1.145543	1.426249	С	-2.245305	-2.770011	-0.073073
Н	-4.782588	-0.407986	0.142581	Н	-2.585109	-4.876353	0.271475
С	-4.397944	-3.800272	0.787250	Н	-3.457752	-4.226285	-1.109996
Н	-5.983608	-2.345750	1.067722	Н	-1.858879	-2.587854	0.937052
Н	-5.562458	-2.639238	-0.614826	Н	-1.368733	-2.955882	-0.696618
С	-3.152472	-4.005238	-0.076685				

Complex Imes₂PtH⁺

96

E: -1967.709321 a.u.

С	0.953946	0.301272	1.815844	С	-3.462532	6.799715	2.385349
С	0.291338	0.918277	2.887020	С	-3.741146	7.110211	1.050608
С	0.711166	0.769987	4.216635	С	-3.485386	6.142257	0.075764
С	1.836577	-0.022420	4.454953	С	-2.973827	4.883301	0.398808
С	2.527516	-0.658027	3.420300	С	-2.678350	5.241031	4.210111
С	2.072955	-0.479185	2.110236	С	-4.338355	8.440919	0.680241
N	-0.885541	1.700789	2.615819	С	-2.722058	3.854395	-0.670851
С	-0.900110	3.017484	2.273526	С	-0.014786	1.441593	5.350896
N	-2.218601	3.314406	2.116013	С	3.710572	-1.542277	3.709195
С	-3.013484	2.205851	2.354788	С	0.485778	0.477527	0.397190
С	-2.172728	1.189730	2.669585	С	2.177000	5.612512	1.829364
Pt	0.630957	4.318932	2.039855	Ν	2.553830	6.232117	0.677180
С	-2.712771	4.615093	1.751356	С	3.652735	7.048877	0.884960
С	-2.953464	5.556805	2.765148	С	3.972889	6.939000	2.197809

N	3.063464	6.058498	2.760850	Н	4.192890	-1.273864	4.652836
С	1.910870	6.047811	-0.596712	Н	3.400617	-2.591176	3.787338
С	2.303625	4.965497	-1.400545	Н	-1.614564	5.036996	4.374239
С	1.691926	4.830949	-2.647805	Н	-2.968518	6.076967	4.850327
С	0.730366	5.737955	-3.103834	Н	-3.232202	4.356371	4.542389
С	0.371754	6.800399	-2.270196	Н	-2.974084	4.252928	-1.655652
С	0.948822	6.981058	-1.010925	Н	-1.672253	3.543700	-0.692224
С	3.345336	3.983425	-0.939279	Н	-3.321358	2.951246	-0.512996
С	0.550264	8.142147	-0.139536	Н	-5.430083	8.415388	0.779202
С	0.127115	5.593348	-4.475020	Н	-3.973200	9.240659	1.330743
С	3.084348	5.680956	4.149407	Н	-4.111971	8.710461	-0.354829
С	2.283512	6.389771	5.056392	Н	4.099034	7.621537	0.087166
С	2.351488	6.025097	6.402054	Н	4.753256	7.401407	2.781515
С	3.189209	4.999503	6.850388	Н	-0.372019	7.517182	-2.610270
С	3.969213	4.321530	5.910210	Н	1.985206	4.000489	-3.285888
С	3.938583	4.644266	4.551673	Н	4.626946	3.521314	6.241463
С	1.376882	7.500537	4.601393	Н	1.738810	6.564859	7.120625
С	3.274723	4.660396	8.314152	Н	0.127682	7.805262	0.812990
С	4.792337	3.897806	3.562047	Н	1.404908	8.784581	0.097734
Н	-2.365445	0.158860	2.921876	Н	-0.200078	8.758316	-0.639082
Н	-4.088880	2.245269	2.280051	Н	4.279307	4.484442	-0.663171
Н	-3.697800	6.366916	-0.966805	Н	3.001212	3.431532	-0.057644
Н	-3.658672	7.541124	3.156511	Н	3.572188	3.261419	-1.726808
Н	2.176876	-0.150163	5.479908	Н	0.764328	6.068735	-5.230203
Н	2.598830	-0.967337	1.292822	Н	0.019530	4.542386	-4.757838
Н	0.465354	1.213600	6.304819	Н	-0.856510	6.066788	-4.534775
Н	-0.024466	2.529984	5.228927	Н	5.377263	3.124114	4.063910
Н	-1.058251	1.114761	5.416502	Н	4.182070	3.413404	2.792229
Н	0.573521	1.523327	0.081956	Н	5.493359	4.562798	3.046063
Н	1.080336	-0.134030	-0.285071	Н	0.590643	7.119754	3.939943
Н	-0.564267	0.190176	0.276917	Н	0.897744	7.983305	5.456010
Н	4.458881	-1.484471	2.913613	Н	1.923847	8.269169	4.044900

Η	2.311953	4.795299	8.815195	Н	3.998190	5.309919	8.821197
Н	3.599256	3.628022	8.469686	Н	1.442663	3.513480	3.022344

5. References

^{S3} M. Strohalm, D. Kavan, P. Novak, M. Volny and V. Havlicek, *Anal. Chem.*, 2010, **82**, 4648-4651.

^{S4} H. J. J Reich Chem. Educ. Software 1996, **3D**, 2.

 ^{S5} W. Jones, 2008 Centre for Enabling New Technologies Through Catalysis Summer School on Organometallic Chemistry, <u>http://depts.washington.edu/centcweb/flashvideos/</u>.
 ^{S6} (a) J. P Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, *Phys. Rev. B*, 1992, 46, 6671-6687; (b) A. D. Becke, *J. Chem. Phys.* 1993, 98, 5648-5652.

^{S7} (a) D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, *Theor. Chim. Acta*, 1990, **77**, 123. (b) J. M. L. Martin and A. Sundermann, *J. Chem. Phys.*, 2001, **114**, 3408, (c) A. Bergner, M. Dolg, W. Kuechle, H. Stoll, H. Preuss, *Mol. Phys.*, 1993, **80**, 1431.
^{S8} P. C. Harihara; J. A. Pople, *Theor. Chim. Acta*, 1973, **28**, 213-222.

^{S1} A. Languérand, S. S. Barnes, G. Bélanger-Chabot, L. Maron, P. Berrouard, P. Audet and F.-G. Fontaine, *Angew. Chem., Int. Ed.*, 2009, **48**, 6695-6698.

⁵² D. A. Hoic, J. R. Wolf, W. M. Davis and G. C. Fu., *Organometallics*, 1996, **15**, 1315-1318.