Supplementary information for

Mechanistic Investigation of cyclohexane oxidation by a binuclear non-heme iron model complex: Evidence of product inhibition by low-temperature stopped-flow studies

Lauren C. Gregor[†], Gerard T. Rowe[†], Elena Rybak-Akimova[‡], and John P. Caradonna^{*,†}

[†]Department of Chemistry, Boston University, Boston, Massachusetts 02215 [‡]Department of Chemistry, Tufts University, Medford, Massachusetts 02115

Page	Content			
S2	<i>Figure S1</i> : 400 MHz ¹ H-NMR Spectrum of MPP-OL-Cl ₆			
S 3	<i>Figure S2</i> : 400 MHz ¹³ C-NMR Spectrum of MPP-OLCl ₆			
S 4	<i>Figure S3</i> : 400 MHz ¹ H-NMR Spectrum of MPPH-Cl ₆			
S5	<i>Figure S4</i> : 400 MHz ¹³ C-NMR Spectrum of MPPH-Cl ₆			
S 6	<i>Figure S5</i> : Diode-array spectrum of 1 with MPPH-Cl ₆			
S 7	<i>Figure S6</i> : Single-wavelength spectrum of 1 with MPPH-Cl ₆			
S 8	<i>Figure S7</i> : Simulation of k_1 for MPPH and MPPH-Cl ₆			
S9	Figure S8: Heterolytic/homolytic cleavage of MPPH			
S 10	Figure S9: Time course reactivity of cyclohexane			
S 11	Figure S10: Effect of single wavelength data by cyclohexanol			
S12	Figure S11: Kinetic data and fit for cyclohexanol at 438 nm			
S 13	Figure S12: Kinetic data and fit for methanol at 438 nm			
S 14	Figure S13: Kinetic data and fit for MPP-OL at 438 nm			
S15	Table S1: Kinetic data for cyclohexanol			
S 16	Table S2: Kinetic data for methanol			
S17	Table S3: Kinetic data for MPP-OL			
S 18	Figure S14: Electrochemistry of 1 with cyclohexanol			
S19	<i>Figure S15</i> : Inhibition of 1 utilizing hydroxyurea			
S20	Equations used in kinetic fits of model in Scheme 1			
S21 – S24	Figures S16-S19: Kinetic data and fit for eliminated models			
S25	References			

Figure S1: 400 MHz ¹H-NMR spectrum of MPP-OL-Cl₆ in CDCl₃.

Figure S2: 400 MHz ¹³C-NMR Spectrum of MPP-OL-Cl₆ in CDCl₃. Starred peak indicates signal from residual hexachloroacetone starting material.

Figure S3: 400 MHz ¹H-NMR Spectrum of MPPH-Cl₆ in CDCl₃.

Figure S4: 400 MHz ¹³C-NMR Spectrum of MPPH-Cl₆ in CDCl₃.

Figure S5: Diode-array mode stopped-flow spectra of the reaction of **1** with MPPH-Cl₆ at -75°C. Data represents the first second of the reaction time. [1] = 0.21 mM and [MPPH-Cl₆] = 53 mM. Scans acquired every 10 ms for a total of 108 samples. 12 scans across the entire time regime displayed here for clarity.

Figure S6: Single-wavelength-mode stopped-flow absorbance (438 nm) versus time for the first second of the reaction of MPPH-Cl₆ with 1 at -75°C. [1] = 0.21 mM and [MPPH-Cl₆] = 53 mM.

Simulation of Intermediate Formation at -75° C

Figure S7: Simulation of k_1 reaction using the second order rate constants determined for 1+MPPH and 1+MPPH-Cl₆ reactions measure at -75°C. [1] = 0.3 mM and [R-OOH] = 50 mM.

Figure S8: Heterolytic/homolytic decomposition pathways of MPPH

Figure S9: Time course reactivity of **1** with MPPH as oxidant and cyclohexane as substrate.

Figure S10: Single wavelength data and kinetic fit for **1** (0.08 mM) and MPPH (9.2 mM) with cyclohexanol (7.6 mM). Inset: Effect of single-wavelength data by addition of cyclohexanol

Figure S11: Kinetic data at 438 nm and overlay of fit for the reaction of **1** (0.079 mM) and cyclohexanol (78 mM) and 2-methyl-1-phenylprob-2-yl hydroperoxide (9.2 mM) at 193 K. Inset: residuals from fit.

Figure S12: Kinetic data at 438 nm and overlay of fit for the reaction of **1** (0.11 mM) and methanol (11 mM) and 2-methyl-1-phenylprob-2-yl hydroperoxide (12.3 mM) at 193 K. Inset: residuals from fit.

Figure S13: Kinetic data and overlay of fit for the reaction of **1** (0.11 mM) and MPP-OL (10.8 mM) and 2-methyl-1-phenylprob-2-yl hydroperoxide (12.1 mM) at 193 K. Inset: residuals from fit.

Step	Experiment A	Experiment B	Experiment C	Average
$k_{\rm f}({\rm M}^{-1}{\rm s}^{-1})$	4.326	9.110	4.4894	
$k_{\rm r} ({\rm s}^{-1})$	0.04688	0.04814	0.04578	
k_1 (s ⁻¹)	0.15 (fixed)	0.15 (fixed)	0.15 (fixed)	
$k_1^{\text{inhib}}_{\text{obs}}(s^{-1})$	2.36×10^{-7}	3.564x10 ⁻⁹	9.93x10 ⁻⁹	
$k_1^{\text{inhib}} (\text{M}^{-1}\text{s}^{-1})$	2.65×10^{-5}	$3.874 \text{ x}10^{-7}$	1.014×10^{-6}	
$k_2(s^{-1})$	0.1260	0.1167	0.1109	
$k_3(s^{-1})$	0.006601	0.004545	0.00634	
Keq	92.7	189	98.1	127

Table S1: Rate data for cyclohexanol

Experimental conditions:

- A. [1] = 0.08 mM, [cyclohexanol] = 7.6 mM, [MPPH] = 9.2 mM
- B. [1] = 0.079 mM, [cyclohexanol] = 39 mM, [MPPH] = 9.2 mM
- C. [1] = 0.078 mM, [cyclohexanol] = 78 mM, [MPPH] = 9.2 mM

	Experiment D	Experiment E	Experiment F	Average
$k_{\rm f}({\rm M}^{-1}{\rm s}^{-1})$	7.9634	4.238	0.707	
$k_{\rm r} ({\rm s}^{-1})$	0.0115	0.005659	0.001241	
k_1 (s ⁻¹)	0.15 (fixed)	0.15 (fixed)	0.15 (fixed)	
$k_1^{\text{inhib}}_{\text{obs}}(s^{-1})$	1.194x10 ⁻⁴	6.994x10 ⁻⁵	1.038×10^{-4}	
$k_1^{\text{inhib}} (\mathrm{M}^{-1}\mathrm{s}^{-1})$	0.009710	0.005868	0.00844	
$k_2(s^{-1})$	0.1283	0.143	0.1332	
$k_3(s^{-1})$	0.00536	0.0067	0.00521]
Keq	692	748	707	716

Table S2: Rate data for methanol

Experimental Conditions:

- D. $[1] = 0.11 \text{ mM}, [CH_3OH] = 11 \text{ mM}, [MPPH] = 12.3 \text{ mM}$
- E. [1] = 0.1095 mM, [CH₃OH] = 54 mM, [MPPH] = 12.3 mM
- F. $[1] = 0.109 \text{ mM}, [CH_3OH] = 109 \text{ mM}, [MPPH] = 12.3 \text{ mM}$

	Experiment G	Experiment H	Experiment I	Average
$k_{\rm f}({\rm M}^{-1}{\rm s}^{-1})$	8.9281	3.69	2.866	
$k_{\rm r} ({\rm s}^{-1})$	0.0452	0.0144	0.011	
$k_1(s^{-1})$	0.15 (fixed)	0.15 (fixed)	0.15 (fixed)	
$k_1^{\text{inhib}}_{\text{obs}}(s^{-1})$	1.579×10^{-4}	4.610×10^{-4}	3.398x10 ⁻⁴	
$k_1^{\text{inhib}} (\mathrm{M}^{-1}\mathrm{s}^{-1})$	0.01305	0.0381	0.02808	
$k_2(s^{-1})$	0.1156	0.1383	0.1306	
$k_3(s^{-1})$	0.0062	0.0063	0.003712	
Keq	197	235	260	230

Table S3: Rate data for MPP-OL

Experimental Conditions:

- G. [1] = 0.11 mM, [MPP-OL] = 10.8 mM, [MPPH] = 12.1 mM
- H. [1] = 0.108 mM, [MPP-OL] = 53.5 mM, [MPPH] = 12.1 mM
- I. [1] = 0.106 mM, [MPP-OL] = 106 mM, [MPPH] = 12.1 mM

Figure S14: Electrochemistry (blue trace) of **1** (0.1 mM) in Electrochemistry (red trace) of **1** (0.098 mM) and cyclohexanol (309 mM). Electrochemistry (purple trace) of **1** (0.091 mM) and cyclohexanol (870 mM). All electrochemistry in DMF with electrolyte (10 mM) and referenced externally to Fc/Fc^+ vs. NHE under anaerobic conditions.

Figure S15: UV-vis spectrum of a solution of **1** (0.19 mM) in 70:30 DCM:DMF (v/v) (black line) at -74°C. A solution of hydroxyurea (0.19 mM) was added to **1** causing a shift in chromophore (red line) followed by the addition of *p*-CN-DMANO (11 mM) (blue line) and no chromophore of **4** observed after 20 minutes (black dashed line)

Equations used in kinetic models and fits for the reaction of **1** with MPPH (X) in the presence of ROH (S1-S5, S8) and in the absence of substrate (S6, S7, S9-S11, S13):

$$\mathbf{1} + MPPH \leftrightarrow \mathbf{5} \tag{S1}$$

$$\mathbf{5} \xrightarrow{k1inhib} \mathbf{6} \tag{S2}$$

$$\frac{-d[\mathbf{1}]}{dt} = \frac{d[\mathbf{5}]}{dt} = kf[\mathbf{1}][\text{ROH}]$$
(S3)

$$\frac{-d[5]}{dt} = \frac{d[1]}{dt} = kr[5]$$
(S4)

$$\frac{-d[5]}{dt} = \frac{d[6]}{dt} = k1inhib[5]$$
(S5)

$$1 + MPPH \xrightarrow{k_1} \mathbf{2} + MPPH \tag{S6}$$

$$\mathbf{2} \stackrel{k2}{\rightarrow} \mathbf{3} \tag{S7}$$

$$\mathbf{6} \stackrel{k2}{\to} \mathbf{3} \tag{S8}$$

$$\mathbf{3} \stackrel{k3}{\rightarrow} \mathbf{4} \tag{S9}$$

$$\frac{-d[\mathbf{1}]}{dt} = \frac{d[\mathbf{2}]}{dt} = k\mathbf{1}[\mathbf{1}][MPPH]$$
(S10)

$$\frac{-d[2]}{dt} = \frac{d[3]}{dt} = k2[2]$$
(S11)

$$\frac{-d[6]}{dt} = \frac{d[3]}{dt} = k2[6]$$
(S12)

$$\frac{-d[\mathbf{3}]}{dt} = \frac{d[\mathbf{4}]}{dt} = k\mathbf{3}[\mathbf{3}]$$
(S13)

Figure S16: Kinetic fit and residuals (Inset) for models that did not resull in adequate fits to the data.

Figure S17: Kinetic fit and residuals (Inset) for models that did not resull in adequate fits to the data.

Figure S18: Kinetic fit and residuals (Inset) for models that did not resull in adequate fits to the data.

Figure S19: Kinetic fit and residuals (Inset) for models that did not resull in adequate fits to the data.

References:

- S1. S. Mukerjee, A. Stassinopoulos and J. P. Caradonna, *Journal of the American Chemical Society*, 1997, **119**, 8097-8098.
- S2. T. L. Foster and J. P. Caradonna, *Journal of the American Chemical Society*, 2003, **125**, 3678-3679.
- S3. R. R. Hiatt and W. M. J. Strachan, *Journal of Organic Chemistry*, 1963, **28**, 1893-1894.
- S4. G. T. Rowe, C. E. Rogge, E. V. Rybak-Akimova and J. P. Caradonna, *Chemistry--A European Journal*, 2008, **14**, 8303-8311.
- S5. D. A. Skoog, D. M. West, and F. J. Holler. *Fundamentals of Analytical Chemistry;* 7th ed.; Harcourt Brace & Company: Orlando, 1996.