A Novel Polyoxovanadium Borate Incorporating an Organicamine Ligand: Synthesis and Structure of $\left[\mathrm{V}_{12} \mathrm{~B}_{16} \mathrm{O}_{\mathbf{5 0}}(\mathrm{OH})_{7}(\mathrm{en})\right]^{7-}$

Yan-Qiong Sun, ${ }^{a}$ Guang-Man Li, ${ }^{a}$ and Yi-Ping Chen* ${ }^{*}$

${ }^{a}$ College of Chemistry and Chemical Engineering, Department of Chemistry, Fuzhou University, Fuzhou, Fujian
350108, P. R. China. Fax: +86-591-22866340; E-mail: ypchen007@ sina.com

Electronic Supplementary Information:

physical measurements

All analytical regent grade chemicals were commercially purchased and used without purification. The elemental analyses of C, H, and N were performed with an Elementar Vario EL III elemental analyzer. The IR spectra were recorded with a Perkin-Elmer Spectrum 2000 FT-IR spectrometer in the range of $400-4000 \mathrm{~cm}^{-1}$ using the KBr pellet technique. Thermogravimetric(TG) analyses were conducted on a Perkin-Elmer TGA7 Thermal analyzer in an N_{2} atmosphere with a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ from $25^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}$.

In order to obtain the 2D IR correlation spectra, a series of dynamic IR spectra were recorded in the range $4000-400 \mathrm{~cm}^{-1}$ on a Perkin-Elmer FT-IR spectrum 2000 spectrometers using KBr pellets. The temperature variation was controlled by a Portable programmable temperature controller (Model 50-886, Love Control Corporation) from 50 to $120^{\circ} \mathrm{C}$ at intervals of $10^{\circ} \mathrm{C}$. The magnetic intensity variation was controlled by a homemade magnetic intensity controller from 5 to 50 mT at intervals of 5 mT . Before 2D calculation, each spectrum was smoothed

Figure S1. V_{12} cage cluster with two semi-circles of five trans edge-sharing VO_{5} square pyramids bridged by two additional VO_{5} units.

The contorted V_{12} ring is composed of two semi-circles of five trans edge-sharing VO_{5} square pyramids bridged by two additional VO_{5} units (Fig 2a). The dihedral angles between the planes of the two semi-circles is 84.58°. The dodecavanadate ring in $\mathbf{1}$ is a closed 12 -membered vanadate
ring but not planar

(a)

(b)

Figure S2. (a) Ball and stick presentation of $\left[\mathrm{B}_{8} \mathrm{O}_{17}(\mathrm{OH})_{3}(\mathrm{en})\right]^{13-}$ cluster. (b) Ball and stick presentation of $\left[\mathrm{B}_{8} \mathrm{O}_{17}(\mathrm{OH})_{4}\right]^{-14}$ cluster.

According to the classification of polyborate anions by Heller, Christ, and Clark, the shorthand notation for this oxo boron cluster is " $8:[2 \Delta+6 \mathrm{~T}]$ ", where the specified number is the number of boron atoms in the isolate cluster, and the symbols Δ and T mean triangle and tetrahedron, respectively.

Figure S3. Ball and stick presentation of 1D anion dual chain bridged by Na^{+}ions running along the [1-10] direction.

Figure S4. 2D supramolecular layer constructed by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.
The uncoordinated en molecules as structure-directing agents are accommodated in the free voids of $\mathbf{1}$ and are interacted to the $\mathrm{V}_{12} \mathrm{~B}_{16}$ clusters by $\mathrm{O}-\mathrm{H} \cdots \mathrm{OH}$-bonds, then the 1D dual chains are further linked to 2D layer

Figure S5. The dinuclear cluster $\left(\mathrm{Dy}_{2}\right)$ units containing two Dy atoms and two $\mathrm{SO}_{4}{ }^{2-}$ anions. Atoms having " A " in their labels are symmetry-generated. A: -x, -y, -z.

A pair of central-symmetry Dy ions are bridged by two $\mu_{2}-\mathrm{O}$ bridges of two $\mathrm{SO}_{4}{ }^{2-}$ anions, forming a [$\mathrm{Dy}_{2} \mathrm{O}_{2}$] rhombic dimeric cluster unit.

Figure S6. IR spectra of $\mathbf{1}$.
Table 1.The IR vibration frequences $\left(\mathrm{cm}^{-1}\right)$ of compound $\mathbf{1}$

Vibration assignment	Vibration frequences $\left(\mathrm{cm}^{-1}\right)$
$\operatorname{vas}\left(\mathrm{V}=\mathrm{O}_{\mathrm{t}}\right)$	953
$\operatorname{vas}\left(\mathrm{~V}-\mathrm{O}_{\mu}\right)$	787,711
$\operatorname{vs}\left(\mathrm{~V}-\mathrm{O}_{\mu}\right)$	672
$\operatorname{vas}\left(\mathrm{~B}^{\mathrm{a}}-\mathrm{O}\right)$	1039
$\operatorname{vas}\left(\mathrm{~B}^{\mathrm{b}}-\mathrm{O}\right)$	1356
$\delta\left(\mathrm{CH}_{2}\right)$	1458
$\delta\left(\mathrm{NH}_{3}\right)$	1518
$\delta(\mathrm{OH})$	1629
$v(\mathrm{~N}-\mathrm{H})$	3081

$v(\mathrm{O}-\mathrm{H})$

a: tetrahedron coordinated B ; b: triangle coordinated B .

Figure $\mathbf{S 7}$ TG curves for $\mathbf{1}$.
The thermal stability of $\mathbf{1}$ was examined by TGA in a dry nitrogen atmosphere from 40 to $700^{\circ} \mathrm{C}$. The TG curves of $\mathbf{1}$ exhibit two-step primary weight loss processes for a crystalline sample. The initial weight loss of 5.86% in the range of $50-90^{\circ} \mathrm{C}$ corresponds to the release of sixteen lattice water molecules (calc. 6.57%). The second weight loss of 31.32% is observed from 90 to $570^{\circ} \mathrm{C}$, and is attributed to the removal of four coordinated water molecules, eight en molecules, two $\mathrm{B}_{8} \mathrm{O}_{20}(\mathrm{en})$ per formula unit (calc. 32.40%).

Table 2 The BVS of Vanadium and Oxygen for 1.

Atoms	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
BVS	4.272	4.314	4.396	4.354	4.271	4.377	4.269	4.358	4.347	4.413
Atoms	V11	V12	O37	O40	O44	O47	O48	O51	O55	
BVS	4.32	4.376	0.777	0.962	0.974	0.721	0.783	1.199	1.057	

Table 3 Parameters of hydrogen bonds for 1.

D-H... A	d(D-H) (A)	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})(\mathrm{A})$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})(\mathrm{A})$	$<\mathrm{DHA}\left({ }^{\circ}\right)$
O37-H1 \cdots O47 ${ }^{\text {a }}$	0.882	1.902	2.762	164.48
O40-H2 ${ }^{\text {a }}$ O50 ${ }^{\text {b }}$	0.878	1.811	2.685	173.78
O44-H3 . ${ }^{\text {O }} 43^{\text {c }}$	0.881	1.996	2.724	139.03
O51-H6..O39 ${ }^{\text {d }}$	0.883	1.940	2.780	158.39
O61-H7 . O 54	0.850	2.035	2.793	148.09
O62-H9 . ${ }^{\text {O } 52 ~}{ }^{\text {e }}$	0.850	1.979	2.782	157.24
O62-H10 . O 55	0.850	1.931	2.770	168.73
O64-H13...O60 ${ }^{\text {d }}$	0.850	1.936	2.720	152.75
O65-H15 . ${ }^{\text {O }} 36^{\text {f }}$	0.850	2.028	2.831	157.18
O65-H16 \cdots O8	0.850	1.978	2.816	168.46
O66-H18 ..- $41^{\text {c }}$	0.850	2.047	2.888	169.91
O67-H20 \cdots O8	0.850	2.032	2.866	166.77
O68-H21 \cdots O $44^{\text {c }}$	0.850	2.150	2.959	158.87
O69-H23 . ${ }^{\text {O }} 42$	0.850	1.977	2.779	157.19
O70-H25 ..O37	0.850	1.976	2.700	142.40

$\mathrm{O} 70-\mathrm{H} 26 \cdots \mathrm{~N}^{\mathrm{b}}$	0.850	2.198	2.875	136.56
$\mathrm{~N} 2-\mathrm{H} 30 \cdots \mathrm{O} 9^{\mathrm{g}}$	1.110	1.911	2.870	142.14
$\mathrm{~N} 3-\mathrm{H} 31 \cdots \mathrm{O} 37$	0.886	2.282	2.880	124.66
$\mathrm{~N} 3-\mathrm{H} 31 \cdots \mathrm{O} 32$	0.886	2.341	2.997	130.82
$\mathrm{~N} 7-\mathrm{H} 35 \cdots \mathrm{O} 69^{\mathrm{h}}$	0.881	1.944	2.799	163.31
$\mathrm{~N} 8-\mathrm{H} 36 \cdots \mathrm{O} 38^{\mathrm{i}}$	0.886	1.796	2.677	172.41
$\mathrm{~N} 9-\mathrm{H} 37 \cdots \mathrm{O} 2^{\mathrm{f}}$	0.917	1.913	2.819	169.10
$\mathrm{~N} 9-\mathrm{H} 38 \cdots \mathrm{O} 48$	0.924	1.782	2.699	170.93

$a[x+1, y, z] ; b[x+1, y-1, z] ; c[-x,-y,-z] ; d[x-1, y+1, z] ; e[-x,-y+1,-z+1] ; f[-x,-y+1,-z] ; g[-x+1,-y,-z+1] ; h[x, y+1, z] ;$ i $[\mathrm{x}-1, \mathrm{y}+1, \mathrm{z}]$.

