

Asymmetric Unit with thermal ellipsoids drawn to 50% probability.

## **X-ray Structure Determination Details**

A crystal of  $C_{10}H_9N_2Cl_4O_1I_1$  was coated in paraffin oil and mounted on a CryoLoop<sup>TM</sup> and placed on the goniometer head under a stream of nitrogen cooled to 100K. The data was collected on a Bruker APEX CCD diffractometer with graphite-monochromated Mo K<sub>a</sub> radiation ( $\lambda = 0.71073$  Å). The unit cell was determined by using reflections from three different orientations. The data was integrated using SAINT.<sup>1</sup> An empirical absorption correction and other corrections were applied to the data using multi-scan SADABS.<sup>1</sup> Structure solution, refinement, and modeling were accomplished by using the Bruker SHELXTL package.<sup>1,2</sup> The structure was determined by full-matrix least-squares refinement of  $F^2$  and the selection of the appropriate atoms from the generated difference map. Hydrogen atom positions were calculated and  $U_{iso}(H)$  values were fixed according to a riding model.

Data collection was on February 14, 2011.

Table 1. Crystal data and structure refinement for bw.

| Identification code | bw                |
|---------------------|-------------------|
| Empirical formula   | C10 H9 Cl4 I N2 O |
| Formula weight      | 441.89            |
| Temperature         | 100(2) K          |
| Wavelength          | 0.71073 Å         |

<sup>&</sup>lt;sup>1</sup> Bruker (1997). SMART (Version 5.625), SAINT (Version 6.22) and SHELXTL (Version 6.10)

<sup>&</sup>lt;sup>2</sup> Sheldrick, G. M. (1997). SHELX-97. University of Göttingen, Germany

| Crystal system                          | Monoclinic                                       |                               |  |
|-----------------------------------------|--------------------------------------------------|-------------------------------|--|
| Space group                             | P2(1)/c                                          |                               |  |
| Unit cell dimensions                    | $a = 9.2405(9) \text{ Å}$ $\alpha = 90^{\circ}.$ |                               |  |
|                                         | b = 6.9153(7) Å                                  | $\beta = 99.331(2)^{\circ}$ . |  |
|                                         | c = 22.244(2)  Å                                 | $\gamma = 90^{\circ}$ .       |  |
| Volume                                  | 1402.6(2) Å <sup>3</sup>                         |                               |  |
| Z                                       | 4                                                |                               |  |
| Density (calculated)                    | 2.093 Mg/m <sup>3</sup>                          |                               |  |
| Absorption coefficient                  | 3.033 mm <sup>-1</sup>                           |                               |  |
| F(000)                                  | 848                                              |                               |  |
| Crystal size                            | 0.23 x 0.11 x 0.08 mm <sup>3</sup>               |                               |  |
| Theta range for data collection         | 1.86 to 28.33°.                                  |                               |  |
| Index ranges                            | -11<=h<=12, -9<=k<=9, -28<=l<=29                 |                               |  |
| Reflections collected                   | 11737                                            |                               |  |
| Independent reflections                 | 3346 [R(int) = 0.0311]                           |                               |  |
| Completeness to theta = $28.33^{\circ}$ | 95.6 %                                           |                               |  |
| Absorption correction                   | Semi-empirical from equivale                     | nts                           |  |
| Max. and min. transmission              | 0.7934 and 0.6324                                |                               |  |
| Refinement method                       | Full-matrix least-squares on F <sup>2</sup>      |                               |  |
| Data / restraints / parameters          | 3346 / 0 / 165                                   |                               |  |
| Goodness-of-fit on F <sup>2</sup>       | 1.087                                            |                               |  |
| Final R indices [I>2sigma(I)]           | R1 = 0.0257, wR2 = 0.0630                        |                               |  |
| R indices (all data)                    | R1 = 0.0276, wR2 = 0.0639                        |                               |  |
| Largest diff. peak and hole             | 1.955 and -0.405 e.Å <sup>-3</sup>               |                               |  |
|                                         |                                                  |                               |  |

|       | Х       | У       | Z       | U(eq) |
|-------|---------|---------|---------|-------|
| I(1)  | 1188(1) | 1798(1) | 3198(1) | 21(1) |
| Cl(1) | 6058(1) | 7231(1) | 4364(1) | 21(1) |
| Cl(2) | 5682(1) | 7795(1) | 5711(1) | 22(1) |
| Cl(3) | 2587(1) | 7840(1) | 6080(1) | 25(1) |
| Cl(4) | -211(1) | 7519(1) | 5107(1) | 22(1) |
| O(1)  | 3440(2) | 9084(3) | 2415(1) | 28(1) |
| N(1)  | 2865(2) | 6728(3) | 3499(1) | 15(1) |
| N(2)  | 682(2)  | 6946(3) | 3754(1) | 15(1) |
| C(1)  | 1425(3) | 6679(3) | 3299(1) | 16(1) |
| C(2)  | 1676(3) | 7192(3) | 4285(1) | 15(1) |
| C(3)  | 3077(3) | 7064(3) | 4122(1) | 15(1) |
| C(4)  | 4329(3) | 7277(3) | 4558(1) | 16(1) |
| C(5)  | 4155(3) | 7551(3) | 5158(1) | 17(1) |
| C(6)  | 2748(3) | 7625(4) | 5324(1) | 18(1) |
| C(7)  | 1496(3) | 7453(3) | 4892(1) | 16(1) |
| C(8)  | -928(3) | 7041(4) | 3656(1) | 23(1) |
| C(9)  | 3951(3) | 6328(4) | 3094(1) | 20(1) |
| C(10) | 4523(3) | 8160(4) | 2844(1) | 23(1) |

Table 2. Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for bw. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| Cl(1)-C(4)      | 1.722(2)   |  |
|-----------------|------------|--|
| Cl(2)-C(5)      | 1.723(3)   |  |
| Cl(3)-C(6)      | 1.720(3)   |  |
| Cl(4)-C(7)      | 1.721(2)   |  |
| O(1)-C(10)      | 1.418(3)   |  |
| N(1)-C(1)       | 1.333(3)   |  |
| N(1)-C(3)       | 1.386(3)   |  |
| N(1)-C(9)       | 1.479(3)   |  |
| N(2)-C(1)       | 1.324(3)   |  |
| N(2)-C(2)       | 1.385(3)   |  |
| N(2)-C(8)       | 1.469(3)   |  |
| C(2)-C(7)       | 1.398(3)   |  |
| C(2)-C(3)       | 1.404(3)   |  |
| C(3)-C(4)       | 1.392(4)   |  |
| C(4)-C(5)       | 1.384(3)   |  |
| C(5)-C(6)       | 1.409(4)   |  |
| C(6)-C(7)       | 1.384(4)   |  |
| C(9)-C(10)      | 1.513(4)   |  |
|                 |            |  |
| C(1)-N(1)-C(3)  | 108.1(2)   |  |
| C(1)-N(1)-C(9)  | 122.0(2)   |  |
| C(3)-N(1)-C(9)  | 129.7(2)   |  |
| C(1)-N(2)-C(2)  | 108.4(2)   |  |
| C(1)-N(2)-C(8)  | 122.1(2)   |  |
| C(2)-N(2)-C(8)  | 129.4(2)   |  |
| N(2)-C(1)-N(1)  | 110.7(2)   |  |
| N(2)-C(2)-C(7)  | 132.4(2)   |  |
| N(2)-C(2)-C(3)  | 106.4(2)   |  |
| C(7)-C(2)-C(3)  | 121.2(2)   |  |
| N(1)-C(3)-C(4)  | 133.0(2)   |  |
| N(1)-C(3)-C(2)  | 106.4(2)   |  |
| C(4)-C(3)-C(2)  | 120.7(2)   |  |
| C(5)-C(4)-C(3)  | 118.3(2)   |  |
| C(5)-C(4)-Cl(1) | 120.18(19) |  |

Table 3. Bond lengths  $[\text{\AA}]$  and angles  $[^\circ]$  for bw.

| C(3)-C(4)-Cl(1) | 121.54(19) |
|-----------------|------------|
| C(4)-C(5)-C(6)  | 120.9(2)   |
| C(4)-C(5)-Cl(2) | 119.50(19) |
| C(6)-C(5)-Cl(2) | 119.57(19) |
| C(7)-C(6)-C(5)  | 121.2(2)   |
| C(7)-C(6)-Cl(3) | 119.46(19) |
| C(5)-C(6)-Cl(3) | 119.25(19) |
| C(6)-C(7)-C(2)  | 117.7(2)   |
| C(6)-C(7)-Cl(4) | 120.35(19) |
| C(2)-C(7)-Cl(4) | 121.98(19) |
| N(1)-C(9)-C(10) | 112.3(2)   |
| O(1)-C(10)-C(9) | 112.0(2)   |
|                 |            |

Symmetry transformations used to generate equivalent atoms:

|       | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| I(1)  | 24(1)           | 16(1)           | 21(1)           | -1(1)           | -1(1)           | 0(1)            |
| Cl(1) | 14(1)           | 23(1)           | 28(1)           | 2(1)            | 4(1)            | 0(1)            |
| Cl(2) | 23(1)           | 19(1)           | 21(1)           | 1(1)            | -4(1)           | -1(1)           |
| Cl(3) | 35(1)           | 26(1)           | 17(1)           | -2(1)           | 8(1)            | -5(1)           |
| Cl(4) | 21(1)           | 20(1)           | 27(1)           | -1(1)           | 12(1)           | 0(1)            |
| O(1)  | 32(1)           | 31(1)           | 24(1)           | 7(1)            | 10(1)           | 6(1)            |
| N(1)  | 14(1)           | 15(1)           | 17(1)           | -1(1)           | 4(1)            | -1(1)           |
| N(2)  | 15(1)           | 14(1)           | 17(1)           | 0(1)            | 2(1)            | -1(1)           |
| C(1)  | 19(1)           | 13(1)           | 17(1)           | 0(1)            | 3(1)            | 1(1)            |
| C(2)  | 13(1)           | 12(1)           | 20(1)           | 0(1)            | 3(1)            | 0(1)            |
| C(3)  | 18(1)           | 10(1)           | 17(1)           | 1(1)            | 5(1)            | 0(1)            |
| C(4)  | 16(1)           | 14(1)           | 20(1)           | 1(1)            | 5(1)            | 1(1)            |
| C(5)  | 20(1)           | 12(1)           | 18(1)           | 1(1)            | 0(1)            | -1(1)           |
| C(6)  | 25(1)           | 13(1)           | 17(1)           | -1(1)           | 6(1)            | -1(1)           |
| C(7)  | 19(1)           | 11(1)           | 20(1)           | 1(1)            | 8(1)            | 0(1)            |
| C(8)  | 14(1)           | 29(1)           | 26(1)           | 0(1)            | 3(1)            | -1(1)           |
| C(9)  | 20(1)           | 21(1)           | 21(1)           | -1(1)           | 9(1)            | 1(1)            |
| C(10) | 23(1)           | 23(1)           | 26(1)           | 4(1)            | 11(1)           | 0(1)            |

Table 4. Anisotropic displacement parameters  $(Å^2 x \ 10^3)$  for bw. The anisotropic displacement factor exponent takes the form:  $-2\pi^2$ [  $h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$ ]

|        | х     | у    | Z    | U(eq) |
|--------|-------|------|------|-------|
|        |       |      |      |       |
| H(1)   | 2917  | 9791 | 2599 | 43    |
| H(1A)  | 991   | 6480 | 2886 | 20    |
| H(8A)  | -1306 | 6954 | 3219 | 34    |
| H(8B)  | -1237 | 8269 | 3815 | 34    |
| H(8C)  | -1313 | 5965 | 3869 | 34    |
| H(9A)  | 3491  | 5508 | 2751 | 24    |
| H(9B)  | 4784  | 5599 | 3324 | 24    |
| H(10A) | 4855  | 9061 | 3185 | 28    |
| H(10B) | 5379  | 7842 | 2647 | 28    |
|        |       |      |      |       |

Table 5. Hydrogen coordinates (  $x\;10^4$  ) and isotropic displacement parameters (Å  $^2x\;10^{-3}$  ) for bw.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012