Supporting Information

Figure S1. The structure of the $[BiW_9O_{33}]^{9-}$ polyanion in **1**. Colour codes: Bi (ultramarine), $\{WO_6\}$ octahedra (pink), O (red).

Figure S2. The structure of the monocapped square antiprismatic of Pr1 atom in 1: Pr1 atom is at the center of the monocapped square antiprismatic, and the lengths of Pr–O. Four oxygen atoms (O83, O83#, O89, O89#) from two {BiW₉} units, two oxygen atoms (O50, O50#) of the carbonate anion, two coordinated water molecules (O51, O52), μ_2 -O (O53) atom. Symmetry code: # = x, -y, z.

Figure S3. The structure of the monocapped square antiprismatic of Nd1 atom in **2**: Nd1 atom is at the center of the monocapped square antiprismatic, and the lengths of Nd–O. four oxygen atoms (O83, O83#, O89, O89#) coming from two {BiW₉} units, two oxygen atoms (O50, O50#) of the carbonate anion, two coordinated water molecules (O51, O52), μ_2 -O (O53) atom. Symmetry code: # = x, -y, z.

Figure S4. The structure of the monocapped square antiprismatic of La1 atom in **3**: La1 atom is at the center of the monocapped square antiprismatic, and the lengths of La–O. four oxygen atoms (O83, O83#, O89, O89#) coming from two {BiW₉} units, two oxygen atoms (O50, O50#) of the carbonate anion, two coordinated water molecules (O51, O52), μ_2 -O (O53) atom. Symmetry code: # = x, -y, z.

Figure S5. 3-D packing arrangement of 1. All the isolated water molecules are omitted for clarity.

Figure S6. UV spectra of compounds 1, 2 and 3 in aqueous solution.

Figure S7. Visible spectra of compounds 1 in aqueous solution.

Figure S8. Visible spectra of compounds 2 in aqueous solution.

Figure S9. The emisson spectrum of compound 1 excited at 230 nm

Figure. S10. Temperature dependence of χ_m^{-1} for **1** at 50–300 K. The solid line is the fit of Curie-Weiss law.

Fig. S11. Temperature dependence of χ_m^{-1} for 2 at 50–300 K. The solid line is the fit of Curie-Weiss law.

The $1/\chi_m$ versus T plots for complexes **1** and **2** (Figure. S10 and S11) obey the Curie–Weiss law $[\chi = C/(T-\theta)]$ from 50 to 300 K with C = 6.13 cm³ mol⁻¹ K, $\theta = -52.2$ K and C = 6.37 cm³ mol⁻¹ K, $\theta = -58.5$ K, respectively. The negative value of θ may be indicative of the weak antiferromagnetic interaction between the neighboring lanthanide ions for **1** and **2**.

IR spectroscopy

The IR spectrum of **1** (Figure. S12) is very similar to the trivalant lacunary α -B-[BiW₉O₃₃]⁹⁻. The characteristic peaks of the different W-O bonds are found as follows: 942 cm⁻¹ for v(W-O_d); 892 cm⁻¹ for v(W-O_c); 778 and 730 cm⁻¹ for v(W-O_b). The characteristic peak at 848 cm⁻¹ is attributed to the v(Bi-O_a).¹ The characteristic peak at the 1456 cm⁻¹ is attributed to v_3 vibration band of CO₃²⁻ group. A broad band at 3426 cm⁻¹ associates with the aqua ligands. The peak at 1619 cm⁻¹ is due to the crystalline lattice water molecules. The IR spectra of complexes **2** and **3** (as shown in Figure 4) are similar to that of complex **1**.

Figure S12. IR spectra of compounds 1, 2 and 3.

Reference:

(1) D. Rusu, C. Crăciun, A. L. Barra, L. David, M. Rusu, C. Rouşu, O. Cozar and G. Marcu, J. Chem. Soc., Dalton Trans., 2001, 2879;

Thermogravimetric analysis

The thermal gravimetric (TGA) analysis curves of 1, 2 and 3 show two mass loss regions below 600°C (Figure S13-S15), The first, the TGA curves of 1, 2 and 3 show weight loss of 10.9%, 10.31% and 8.62% in the range of 41-315°C, 36-314°C and 16-318°C, which are assigned to lattice water loss equal to 95, 91 and 73 molecules for 1, 2, and 3, respectively. The crystal structure of the compound 1, 2 and 3 may be stabilized by the intermolecular O-H···O hydrogen bonds in lattice water molecules.¹ In the second region, the TGA curves of 1, 2 and 3 show weight loss of 1.57%, 1.39% and 1.36% in the range of 315-365°C, 314-375°C, 316-378°C, which are assigned to of 6 coordinated water molecules the loss and 3 hydroxyls of $[{Bi_6(\mu_3-O)_4(\mu_2-OH)_3}]^{7+}$ due to inter molecular condensation.² The TGA plots of 1, 2 and **3** indicate that the complexes are thermally stable up to about 315°C.

Reference:

(1) A. Dziewulska-Kułaczkowska, L. Mazur and W. Ferenc, *J. Therm. Anal. Calorim.* 2009, **96**, 255.

(2) D. L. Rogow, H. H. Fei, D. P. Brennan, M. Ikehata, P. Y. Zavalij, A. G. Oliver and S. R. J. Oliver, *Inorg. Chem.* 2010, **49**, 5619;

Figure S13. The TG curve of 1.

Figure S14. The TG curve of 2.

Figure S15. The TG curve of 3.

Bi(1)-O(33)	2.122(16)	W(9)-O(60)	1.924(18)	
Bi(1)-O(32)#1	2.129(13)	W(9)-O(57)	2.032(15)	
Bi(1)-O(32)	2.129(13)	W(9)-O(32)	2.278(13)	
Bi(2)-O(53)	2.162(18)	W(10)-O(26)	1.78(2)	
Bi(2)-O(84)	2.188(17)	W(10)-O(25)	1.800(15)	
Bi(2)-O(85)#1	2.361(12)	W(10)-O(25)#1	1.800(15)	
Bi(2)-O(85)	2.361(12)	W(10)-O(27)#1	2.041(14)	
Bi(2)-O(83)	2.653(12)	W(10)-O(27)	2.041(14)	
Bi(2)-O(83)#1	2.653(12)	W(10)-O(28)	2.349(18)	
Bi(4)-O(84)	2.129(9)	W(15)-O(30)	1.742(15)	
Bi(4)-O(55)	2.186(12)	W(15)-O(27)	1.821(15)	
Bi(4)-O(28)	2.367(12)	W(15)-O(57)	1.927(15)	
Bi(4)-O(25)	2.375(14)	W(15)-O(31)	1.942(15)	
Bi(4)-O(85)	2.553(12)	W(15)-O(29)	1.945(5)	
Bi(4)-O(78)	2.685(13)	W(15)-O(32)	2.275(11)	
Bi(5)-O(55)	2.101(12)	W(17)-O(37)	1.729(17)	
Bi(5)-O(55)#1	2.101(12)	W(17)-O(40)	1.745(15)	
Bi(5)-O(28)	2.212(18)	W(17)-O(36)	1.950(15)	
Bi(5)-O(56)#1	2.743(14)	W(17)-O(38)	1.962(10)	
Bi(5)-O(56)	2.743(14)	W(17)-O(41)#1	2.027(15)	
Bi(7)-O(43)	2.125(13)	W(17)-O(33)	2.224(12)	
Bi(7)-O(55)	2.187(12)	Pr(1)-O(89)	2.400(14)	
Bi(7)-O(78)	2.336(13)	Pr(1)-O(89)#1	2.400(14)	
Bi(7)-O(56)	2.339(14)	Pr(1)-O(53)	2.524(18)	
Bi(7)-O(44)	2.612(14)	Pr(1)-O(52)	2.539(18)	
Bi(7)-O(42)	2.752(12)	Pr(1)-O(50)#1	2.548(14)	
W(7)-O(34)	1.722(15)	Pr(1)-O(50)	2.548(14)	
W(7)-O(35)	1.748(16)	Pr(1)-O(83)	2.549(12)	
W(7)-O(36)	1.907(14)	Pr(1)-O(83)#1	2.549(12)	
W(7)-O(31)	1.956(16)	Pr(1)-O(51)	2.61(2)	
W(7)-O(61)	2.078(16)	Pr(2)-O(45)	2.462(14)	
W(7)-O(32)	2.200(13)	Pr(2)-O(46)	2.483(15)	
W(8)-O(62)	1.68(3)	Pr(2)-O(49)	2.549(3)	
W(8)-O(41)#1	1.874(13)	Pr(2)-O(42)	2.560(14)	
W(8)-O(41)	1.874(13)	Pr(2)-O(43)	2.564(12)	
W(8)-O(60)#1	1.907(18)	Pr(2)-O(50)	2.568(14)	
W(8)-O(60)	1.907(18)	Pr(2)-O(48)	2.572(14)	
W(8)-O(33)	2.352(18)	Pr(2)-O(44)	2.588(13)	
W(9)-O(59)	1.698(15)	Pr(2)-O(47)	2.600(14)	
W(9)-O(61)	1.897(16)	O(49)-C(1)	1.27(3)	
W(9)-O(58)	1.907(5)	O(50)-C(1)	1.29(2)	
O(33)-Bi(1)-O(32)#1	85.8(5)			

Table S1. Selected bond lengths [Å] and bond angles (°) for the compound 1.

O(33)-Bi(1)-O(32)	85.8(5)	O(43)-Bi(7)-O(78)	88.4(5)
O(32)#1-Bi(1)-O(32)	85.8(7)	O(55)-Bi(7)-O(78)	72.9(4)
O(53)-Bi(2)-O(84)	83.5(7)	O(43)-Bi(7)-O(56)	91.6(5)
O(53)-Bi(2)-O(85)#1	87.7(4)	O(55)-Bi(7)-O(56)	71.4(5)
O(84)-Bi(2)-O(85)#1	70.1(3)	O(78)-Bi(7)-O(56)	144.1(5)
O(53)-Bi(2)-O(85)	87.7(4)	O(43)-Bi(7)-O(44)	72.0(4)
O(84)-Bi(2)-O(85)	70.1(3)	O(55)-Bi(7)-O(44)	137.5(4)
O(85)#1-Bi(2)-O(85)	140.1(6)	O(78)-Bi(7)-O(44)	138.0(4)
O(53)-Bi(2)-O(83)	70.8(5)	O(56)-Bi(7)-O(44)	75.0(4)
O(84)-Bi(2)-O(83)	134.7(4)	O(43)-Bi(7)-O(42)	72.3(5)
O(85)#1-Bi(2)-O(83)	141.7(4)	O(55)-Bi(7)-O(42)	135.4(4)
O(85)-Bi(2)-O(83)	72.2(4)	O(78)-Bi(7)-O(42)	69.6(4)
O(53)-Bi(2)-O(83)#1	70.8(5)	O(56)-Bi(7)-O(42)	143.7(4)
O(84)-Bi(2)-O(83)#1	134.7(4)	O(44)-Bi(7)-O(42)	69.2(4)
O(85)#1-Bi(2)-O(83)#1	72.2(4)	O(34)-W(7)-O(35)	104.5(8)
O(85)-Bi(2)-O(83)#1	141.7(4)	O(34)-W(7)-O(36)	91.9(6)
O(83)-Bi(2)-O(83)#1	70.9(5)	O(35)-W(7)-O(36)	100.5(6)
O(84)-Bi(4)-O(55)	90.7(6)	O(34)-W(7)-O(31)	93.4(6)
O(84)-Bi(4)-O(28)	73.1(5)	O(35)-W(7)-O(31)	96.7(6)
O(55)-Bi(4)-O(28)	72.1(5)	O(36)-W(7)-O(31)	160.2(6)
O(84)-Bi(4)-O(25)	92.3(7)	O(34)-W(7)-O(61)	159.6(6)
O(55)-Bi(4)-O(25)	138.5(4)	O(35)-W(7)-O(61)	95.8(7)
O(28)-Bi(4)-O(25)	69.3(6)	O(36)-W(7)-O(61)	85.1(6)
O(84)-Bi(4)-O(85)	67.2(5)	O(31)-W(7)-O(61)	83.4(6)
O(55)-Bi(4)-O(85)	110.9(4)	O(34)-W(7)-O(32)	87.4(6)
O(28)-Bi(4)-O(85)	140.1(4)	O(35)-W(7)-O(32)	165.6(7)
O(25)-Bi(4)-O(85)	108.3(4)	O(36)-W(7)-O(32)	86.9(5)
O(84)-Bi(4)-O(78)	110.7(6)	O(31)-W(7)-O(32)	74.3(5)
O(55)-Bi(4)-O(78)	66.1(4)	O(61)-W(7)-O(32)	72.3(5)
O(28)-Bi(4)-O(78)	138.0(5)	O(62)-W(8)-O(41)#1	104.7(7)
O(25)-Bi(4)-O(78)	147.6(5)	O(62)-W(8)-O(41)	104.7(7)
O(85)-Bi(4)-O(78)	63.8(4)	O(41)#1-W(8)-O(41)	99.4(9)
O(55)-Bi(5)-O(55)#1	89.3(7)	O(62)-W(8)-O(60)#1	96.9(8)
O(55)-Bi(5)-O(28)	77.0(5)	O(41)#1-W(8)-O(60)#1	156.1(7)
O(55)#1-Bi(5)-O(28)	77.0(5)	O(41)-W(8)-O(60)#1	84.5(7)
O(55)-Bi(5)-O(56)#1	105.5(4)	O(62)-W(8)-O(60)	96.9(8)
O(55)#1-Bi(5)-O(56)#1	64.6(4)	O(41)#1-W(8)-O(60)	84.5(7)
O(28)-Bi(5)-O(56)#1	141.4(4)	O(41)-W(8)-O(60)	156.1(7)
O(55)-Bi(5)-O(56)	64.6(4)	O(60)#1-W(8)-O(60)	82.9(11)
O(55)#1-Bi(5)-O(56)	105.5(4)	O(62)-W(8)-O(33)	176.1(10)
O(28)-Bi(5)-O(56)	141.4(4)	O(41)#1-W(8)-O(33)	72.9(5)
O(56)#1-Bi(5)-O(56)	59.3(6)	O(41)-W(8)-O(33)	72.9(5)
O(43)-Bi(7)-O(55)	83.5(5)	O(60)#1-W(8)-O(33)	86.0(5)
O(59)-W(9)-O(61)	99.1(8)	O(60)-W(8)-O(33)	86.0(5)

O(59)-W(9)-O(58)	101.3(8)	O(29)-W(15)-O(32)	88.6(6)
O(61)-W(9)-O(58)	159.6(7)	O(37)-W(17)-O(40)	104.3(8)
O(59)-W(9)-O(60)	100.6(7)	O(37)-W(17)-O(36)	92.0(6)
O(61)-W(9)-O(60)	92.2(7)	O(40)-W(17)-O(36)	99.9(6)
O(58)-W(9)-O(60)	85.5(8)	O(37)-W(17)-O(38)	94.7(7)
O(59)-W(9)-O(57)	97.4(7)	O(40)-W(17)-O(38)	97.5(7)
O(61)-W(9)-O(57)	89.2(6)	O(36)-W(17)-O(38)	159.2(7)
O(58)-W(9)-O(57)	86.8(7)	O(37)-W(17)-O(41)#1	160.8(7)
O(60)-W(9)-O(57)	161.5(6)	O(40)-W(17)-O(41)#1	94.7(7)
O(59)-W(9)-O(32)	169.1(7)	O(36)-W(17)-O(41)#1	81.3(6)
O(61)-W(9)-O(32)	73.8(5)	O(38)-W(17)-O(41)#1	86.0(7)
O(58)-W(9)-O(32)	85.8(6)	O(37)-W(17)-O(33)	88.4(7)
O(60)-W(9)-O(32)	88.1(5)	O(40)-W(17)-O(33)	165.7(7)
O(57)-W(9)-O(32)	74.6(5)	O(36)-W(17)-O(33)	86.1(5)
O(26)-W(10)-O(25)	102.6(6)	O(38)-W(17)-O(33)	74.5(6)
O(26)-W(10)-O(25)#1	102.6(6)	O(41)#1-W(17)-O(33)	73.2(6)
O(25)-W(10)-O(25)#1	97.1(10)	O(89)-Pr(1)-O(89)#1	139.5(7)
O(26)-W(10)-O(27)#1	96.9(7)	O(89)-Pr(1)-O(53)	109.6(3)
O(25)-W(10)-O(27)#1	157.2(6)	O(89)#1-Pr(1)-O(53)	109.6(3)
O(25)#1-W(10)-O(27)#1	89.9(6)	O(89)-Pr(1)-O(52)	71.0(3)
O(26)-W(10)-O(27)	96.9(7)	O(89)#1-Pr(1)-O(52)	71.0(3)
O(25)-W(10)-O(27)	89.9(6)	O(53)-Pr(1)-O(52)	146.0(7)
O(25)#1-W(10)-O(27)	157.2(6)	O(89)-Pr(1)-O(50)#1	117.0(5)
O(27)#1-W(10)-O(27)	76.0(7)	O(89)#1-Pr(1)-O(50)#1	68.5(4)
O(26)-W(10)-O(28)	176.2(8)	O(53)-Pr(1)-O(50)#1	70.1(5)
O(25)-W(10)-O(28)	79.9(5)	O(52)-Pr(1)-O(50)#1	79.4(6)
O(25)#1-W(10)-O(28)	79.9(5)	O(89)-Pr(1)-O(50)	68.5(4)
O(27)#1-W(10)-O(28)	80.0(5)	O(89)#1-Pr(1)-O(50)	117.0(5)
O(27)-W(10)-O(28)	80.0(5)	O(53)-Pr(1)-O(50)	70.1(5)
O(30)-W(15)-O(27)	102.6(7)	O(52)-Pr(1)-O(50)	79.4(6)
O(30)-W(15)-O(57)	97.8(7)	O(50)#1-Pr(1)-O(50)	51.8(6)
O(27)-W(15)-O(57)	158.9(6)	O(89)-Pr(1)-O(83)	67.7(4)
O(30)-W(15)-O(31)	101.4(7)	O(89)#1-Pr(1)-O(83)	138.9(4)
O(27)-W(15)-O(31)	91.8(6)	O(53)-Pr(1)-O(83)	67.5(4)
O(57)-W(15)-O(31)	89.5(6)	O(52)-Pr(1)-O(83)	135.1(4)
O(30)-W(15)-O(29)	97.0(7)	O(50)#1-Pr(1)-O(83)	135.7(4)
O(27)-W(15)-O(29)	86.6(7)	O(50)-Pr(1)-O(83)	100.9(4)
O(57)-W(15)-O(29)	85.6(7)	O(89)-Pr(1)-O(83)#1	138.9(4)
O(31)-W(15)-O(29)	161.4(7)	O(89)#1-Pr(1)-O(83)#1	67.7(4)
O(30)-W(15)-O(32)	171.7(6)	O(53)-Pr(1)-O(83)#1	67.5(4)
O(27)-W(15)-O(32)	83.7(6)	O(52)-Pr(1)-O(83)#1	135.1(4)
O(57)-W(15)-O(32)	76.6(6)	O(50)#1-Pr(1)-O(83)#1	100.9(4)
O(31)-W(15)-O(32)	72.8(6)	O(50)-Pr(1)-O(83)#1	135.7(4)
O(89)-Pr(1)-O(51)	80.6(4)	O(83)-Pr(1)-O(83)#1	74.3(5)

O(89)#1-Pr(1)-O(51)	80.6(4)	O(46)-Pr(2)-O(48)	69.8(5)	
O(53)-Pr(1)-O(51)	132.2(7)	O(49)-Pr(2)-O(48)	76.1(5)	
O(52)-Pr(1)-O(51)	81.8(8)	O(42)-Pr(2)-O(48)	134.9(5)	
O(50)#1-Pr(1)-O(51)	147.7(4)	O(43)-Pr(2)-O(48)	144.6(5)	
O(50)-Pr(1)-O(51)	147.7(4)	O(50)-Pr(2)-O(48)	78.1(5)	
O(83)-Pr(1)-O(51)	74.9(5)	O(45)-Pr(2)-O(44)	70.4(4)	
O(83)#1-Pr(1)-O(51)	74.9(5)	O(46)-Pr(2)-O(44)	138.2(4)	
O(45)-Pr(2)-O(46)	136.5(5)	O(49)-Pr(2)-O(44)	103.5(5)	
O(45)-Pr(2)-O(49)	68.8(5)	O(42)-Pr(2)-O(44)	72.6(4)	
O(46)-Pr(2)-O(49)	115.7(5)	O(43)-Pr(2)-O(44)	66.2(4)	
O(45)-Pr(2)-O(42)	138.7(4)	O(50)-Pr(2)-O(44)	135.6(4)	
O(46)-Pr(2)-O(42)	68.6(4)	O(48)-Pr(2)-O(44)	137.2(5)	
O(49)-Pr(2)-O(42)	138.7(5)	O(45)-Pr(2)-O(47)	78.9(5)	
O(45)-Pr(2)-O(43)	110.0(4)	O(46)-Pr(2)-O(47)	78.5(5)	
O(46)-Pr(2)-O(43)	112.1(5)	O(49)-Pr(2)-O(47)	144.6(6)	
O(49)-Pr(2)-O(43)	71.5(5)	O(42)-Pr(2)-O(47)	76.1(4)	
O(42)-Pr(2)-O(43)	69.5(4)	O(43)-Pr(2)-O(47)	135.8(4)	
O(45)-Pr(2)-O(50)	117.1(5)	O(50)-Pr(2)-O(47)	145.2(5)	
O(46)-Pr(2)-O(50)	69.0(4)	O(48)-Pr(2)-O(47)	79.6(5)	
O(49)-Pr(2)-O(50)	51.4(5)	O(44)-Pr(2)-O(47)	77.8(4)	
O(42)-Pr(2)-O(50)	102.0(4)	O(49)-C(1)-O(50)	120.1(14)	
O(43)-Pr(2)-O(50)	70.7(4)	O(49)-C(1)-O(50)#1	120.1(14)	
O(45)-Pr(2)-O(48)	69.9(5)	O(50)-C(1)-O(50)#1	120(3)	

Symmetry code for 1: # = x, -y, z.

Bi(1)-O(32)#1	2.129(12)	W(10)-O(26)	1.71(2)
Bi(1)-O(32)	2.129(11)	W(10)-O(25)	1.756(15)
Bi(1)-O(33)	2.132(15)	W(10)-O(25)#1	1.756(15)
Bi(2)-O(53)	2.167(16)	W(10)-O(27)#1	2.033(14)
Bi(2)-O(84)	2.208(17)	W(10)-O(27)	2.033(14)
Bi(2)-O(85)	2.361(11)	W(10)-O(28)	2.380(15)
Bi(2)-O(85)#1	2.361(11)	W(15)-O(30)	1.726(16)
Bi(2)-O(83)	2.694(10)	W(15)-O(27)	1.831(14)
Bi(2)-O(83)#1	2.694(10)	W(15)-O(31)	1.920(13)
Bi(4)-O(84)	2.114(9)	W(15)-O(29)	1.926(5)
Bi(4)-O(55)	2.193(11)	W(15)-O(57)	1.934(16)
Bi(4)-O(28)	2.326(11)	W(15)-O(32)	2.230(12)
Bi(4)-O(25)	2.441(12)	W(17)-O(37)	1.730(13)
Bi(4)-O(85)	2.538(12)	W(17)-O(40)	1.736(14)
Bi(4)-O(78)	2.668(11)	W(17)-O(36)	1.941(15)
Bi(5)-O(55)	2.115(11)	W(17)-O(38)	1.945(10)
Bi(5)-O(55)#1	2.115(11)	W(17)-O(41)#1	2.070(16)
Bi(5)-O(28)	2.219(17)	W(17)-O(33)	2.212(10)
Bi(7)-O(43)	2.149(10)	Nd(1)-O(89)	2.411(12)
Bi(7)-O(55)	2.164(12)	Nd(1)-O(89)#1	2.411(12)
Bi(7)-O(56)	2.292(13)	Nd(1)-O(53)	2.488(18)
Bi(7)-O(78)	2.317(12)	Nd(1)-O(83)	2.503(12)
Bi(7)-O(44)	2.662(12)	Nd(1)-O(83)#1	2.503(12)
Bi(7)-O(42)	2.748(11)	Nd(1)-O(51)	2.53(2)
W(7)-O(34)	1.733(15)	Nd(1)-O(50)#1	2.536(13)
W(7)-O(35)	1.754(14)	Nd(1)-O(50)	2.536(13)
W(7)-O(36)	1.924(15)	Nd(1)-O(52)	2.546(17)
W(7)-O(31)	2.015(12)	Nd(2)-O(45)	2.392(13)
W(7)-O(61)	2.083(18)	Nd(2)-O(46)	2.430(14)
W(7)-O(32)	2.207(12)	Nd(2)-O(42)	2.471(13)
W(8)-O(62)	1.70(2)	Nd(2)-O(48)	2.492(13)
W(8)-O(41)#1	1.872(14)	Nd(2)-O(43)	2.520(11)
W(8)-O(41)	1.872(14)	Nd(2)-O(49)	2.531(2)
W(8)-O(60)	1.970(15)	Nd(2)-O(44)	2.536(14)
W(8)-O(60)#1	1.970(15)	Nd(2)-O(47)	2.541(13)
W(8)-O(33)	2.345(16)	Nd(2)-O(50)	2.549(13)
W(9)-O(59)	1.724(15)	O(49)-C(1)	1.22(3)
W(9)-O(60)	1.855(15)	O(50)-C(1)	1.26(2)
W(9)-O(61)	1.897(16)	O(32)#1-Bi(1)-O(32)	85.4(7)
W(9)-O(58)	1.918(5)	O(32)#1-Bi(1)-O(33)	87.3(5)
W(9)-O(57)	1.961(15)	O(32)-Bi(1)-O(33)	87.3(5)
W(9)-O(32)	2.286(12)	O(53)-Bi(2)-O(84)	84.4(7)

Table S2. Selected bond lengths [Å] and bond angles (°) for the compound **2**.

O(53)-Bi(2)-O(85)	88.1(3)	O(56)-Bi(7)-O(42)	140.5(4)
O(84)-Bi(2)-O(85)	69.8(3)	O(78)-Bi(7)-O(42)	71.6(4)
O(53)-Bi(2)-O(85)#1	88.1(3)	O(44)-Bi(7)-O(42)	67.0(4)
O(84)-Bi(2)-O(85)#1	69.8(3)	O(34)-W(7)-O(35)	105.0(8)
O(85)-Bi(2)-O(85)#1	139.6(6)	O(34)-W(7)-O(36)	93.1(6)
O(53)-Bi(2)-O(83)	69.6(5)	O(35)-W(7)-O(36)	100.4(6)
O(84)-Bi(2)-O(83)	134.9(4)	O(34)-W(7)-O(31)	93.1(6)
O(85)-Bi(2)-O(83)	72.9(4)	O(35)-W(7)-O(31)	96.1(6)
O(85)#1-Bi(2)-O(83)	141.3(4)	O(36)-W(7)-O(31)	160.2(6)
O(53)-Bi(2)-O(83)#1	69.6(5)	O(34)-W(7)-O(61)	160.2(6)
O(84)-Bi(2)-O(83)#1	134.9(4)	O(35)-W(7)-O(61)	94.8(7)
O(85)-Bi(2)-O(83)#1	141.3(4)	O(36)-W(7)-O(61)	84.1(6)
O(85)#1-Bi(2)-O(83)#1	72.9(4)	O(31)-W(7)-O(61)	83.7(5)
O(83)-Bi(2)-O(83)#1	69.8(5)	O(34)-W(7)-O(32)	87.4(6)
O(84)-Bi(4)-O(55)	90.8(6)	O(35)-W(7)-O(32)	164.4(6)
O(84)-Bi(4)-O(28)	71.4(5)	O(36)-W(7)-O(32)	88.0(5)
O(55)-Bi(4)-O(28)	72.8(5)	O(31)-W(7)-O(32)	73.5(5)
O(84)-Bi(4)-O(25)	91.7(6)	O(61)-W(7)-O(32)	72.9(5)
O(55)-Bi(4)-O(25)	139.1(4)	O(62)-W(8)-O(41)#1	102.4(7)
O(28)-Bi(4)-O(25)	69.5(5)	O(62)-W(8)-O(41)	102.4(7)
O(84)-Bi(4)-O(85)	67.8(5)	O(41)#1-W(8)-O(41)	96.6(9)
O(55)-Bi(4)-O(85)	110.3(4)	O(62)-W(8)-O(60)	97.7(7)
O(28)-Bi(4)-O(85)	139.0(4)	O(41)#1-W(8)-O(60)	87.0(6)
O(25)-Bi(4)-O(85)	108.4(4)	O(41)-W(8)-O(60)	158.3(6)
O(84)-Bi(4)-O(78)	111.6(5)	O(62)-W(8)-O(60)#1	97.7(7)
O(55)-Bi(4)-O(78)	65.0(4)	O(41)#1-W(8)-O(60)#1	158.3(6)
O(28)-Bi(4)-O(78)	137.6(5)	O(41)-W(8)-O(60)#1	87.0(6)
O(25)-Bi(4)-O(78)	148.0(4)	O(60)-W(8)-O(60)#1	82.1(8)
O(85)-Bi(4)-O(78)	64.3(4)	O(62)-W(8)-O(33)	175.0(8)
O(55)-Bi(5)-O(55)#1	89.6(7)	O(41)#1-W(8)-O(33)	74.5(5)
O(55)-Bi(5)-O(28)	76.4(4)	O(41)-W(8)-O(33)	74.5(5)
O(55)#1-Bi(5)-O(28)	76.4(4)	O(60)-W(8)-O(33)	86.0(5)
O(43)-Bi(7)-O(55)	83.6(4)	O(60)#1-W(8)-O(33)	86.0(5)
O(43)-Bi(7)-O(56)	90.8(5)	O(59)-W(9)-O(60)	101.7(7)
O(55)-Bi(7)-O(56)	72.4(4)	O(59)-W(9)-O(61)	99.4(8)
O(43)-Bi(7)-O(78)	88.3(5)	O(60)-W(9)-O(61)	90.9(6)
O(55)-Bi(7)-O(78)	72.2(4)	O(59)-W(9)-O(58)	100.2(9)
O(56)-Bi(7)-O(78)	144.4(4)	O(60)-W(9)-O(58)	88.0(7)
O(43)-Bi(7)-O(44)	71.4(4)	O(61)-W(9)-O(58)	160.2(8)
O(55)-Bi(7)-O(44)	137.5(4)	O(59)-W(9)-O(57)	96.6(7)
O(56)-Bi(7)-O(44)	74.2(4)	O(60)-W(9)-O(57)	161.3(6)
O(78)-Bi(7)-O(44)	137.9(4)	O(61)-W(9)-O(57)	90.0(6)
O(43)-Bi(7)-O(42)	70.4(4)	O(58)-W(9)-O(57)	84.9(7)
O(55)-Bi(7)-O(42)	135.5(4)	O(59)-W(9)-O(32)	167.9(7)

O(60)-W(9)-O(32)	89.0(5)	O(37)-W(17)-O(33)	89.0(6)
O(61)-W(9)-O(32)	74.5(6)	O(40)-W(17)-O(33)	166.4(6)
O(58)-W(9)-O(32)	85.8(7)	O(36)-W(17)-O(33)	86.5(5)
O(57)-W(9)-O(32)	73.2(5)	O(38)-W(17)-O(33)	73.0(5)
O(26)-W(10)-O(25)	101.6(6)	O(41)#1-W(17)-O(33)	74.0(5)
O(26)-W(10)-O(25)#1	101.6(6)	O(89)-Nd(1)-O(89)#1	140.2(6)
O(25)-W(10)-O(25)#1	98.1(11)	O(89)-Nd(1)-O(53)	109.4(3)
O(26)-W(10)-O(27)#1	96.3(7)	O(89)#1-Nd(1)-O(53)	109.4(3)
O(25)-W(10)-O(27)#1	158.9(6)	O(89)-Nd(1)-O(83)	66.0(4)
O(25)#1-W(10)-O(27)#1	89.2(7)	O(89)#1-Nd(1)-O(83)	138.6(4)
O(26)-W(10)-O(27)	96.3(7)	O(53)-Nd(1)-O(83)	68.5(4)
O(25)-W(10)-O(27)	89.2(7)	O(89)-Nd(1)-O(83)#1	138.6(4)
O(25)#1-W(10)-O(27)	158.9(6)	O(89)#1-Nd(1)-O(83)#1	66.0(4)
O(27)#1-W(10)-O(27)	77.7(8)	O(53)-Nd(1)-O(83)#1	68.5(4)
O(26)-W(10)-O(28)	176.6(8)	O(83)-Nd(1)-O(83)#1	76.0(5)
O(25)-W(10)-O(28)	80.6(5)	O(89)-Nd(1)-O(51)	79.8(4)
O(25)#1-W(10)-O(28)	80.6(5)	O(89)#1-Nd(1)-O(51)	79.8(4)
O(27)#1-W(10)-O(28)	81.1(5)	O(53)-Nd(1)-O(51)	133.3(6)
O(27)-W(10)-O(28)	81.1(5)	O(83)-Nd(1)-O(51)	75.2(4)
O(30)-W(15)-O(27)	101.1(7)	O(83)#1-Nd(1)-O(51)	75.2(4)
O(30)-W(15)-O(31)	99.8(6)	O(89)-Nd(1)-O(50)#1	117.1(4)
O(27)-W(15)-O(31)	91.9(6)	O(89)#1-Nd(1)-O(50)#1	70.5(5)
O(30)-W(15)-O(29)	97.8(6)	O(53)-Nd(1)-O(50)#1	69.0(5)
O(27)-W(15)-O(29)	86.1(6)	O(83)-Nd(1)-O(50)#1	135.1(4)
O(31)-W(15)-O(29)	162.4(6)	O(83)#1-Nd(1)-O(50)#1	101.1(4)
O(30)-W(15)-O(57)	100.7(7)	O(51)-Nd(1)-O(50)#1	148.5(4)
O(27)-W(15)-O(57)	157.8(6)	O(89)-Nd(1)-O(50)	70.5(5)
O(31)-W(15)-O(57)	89.0(6)	O(89)#1-Nd(1)-O(50)	117.1(4)
O(29)-W(15)-O(57)	86.4(6)	O(53)-Nd(1)-O(50)	69.0(5)
O(30)-W(15)-O(32)	173.0(6)	O(83)-Nd(1)-O(50)	101.1(4)
O(27)-W(15)-O(32)	83.8(5)	O(83)#1-Nd(1)-O(50)	135.1(4)
O(31)-W(15)-O(32)	74.8(5)	O(51)-Nd(1)-O(50)	148.5(4)
O(29)-W(15)-O(32)	87.6(5)	O(50)#1-Nd(1)-O(50)	49.6(6)
O(57)-W(15)-O(32)	75.0(5)	O(89)-Nd(1)-O(52)	71.7(3)
O(37)-W(17)-O(40)	102.3(6)	O(89)#1-Nd(1)-O(52)	71.7(3)
O(37)-W(17)-O(36)	94.0(6)	O(53)-Nd(1)-O(52)	145.3(6)
O(40)-W(17)-O(36)	100.0(6)	O(83)-Nd(1)-O(52)	134.3(3)
O(37)-W(17)-O(38)	94.5(7)	O(83)#1-Nd(1)-O(52)	134.3(3)
O(40)-W(17)-O(38)	98.3(7)	O(51)-Nd(1)-O(52)	81.4(7)
O(36)-W(17)-O(38)	157.6(7)	O(50)#1-Nd(1)-O(52)	79.6(5)
O(37)-W(17)-O(41)#1	162.8(5)	O(50)-Nd(1)-O(52)	79.6(5)
O(40)-W(17)-O(41)#1	94.9(6)	O(45)-Nd(2)-O(46)	137.9(4)
O(36)-W(17)-O(41)#1	82.7(6)	O(45)-Nd(2)-O(42)	137.9(4)
O(38)-W(17)-O(41)#1	83.0(7)	O(46)-Nd(2)-O(42)	67.7(4)

O(45)-Nd(2)-O(48)	70.6(5)	O(45)-Nd(2)-O(47)	80.3(4)	
O(46)-Nd(2)-O(48)	70.6(4)	O(46)-Nd(2)-O(47)	77.7(4)	
O(42)-Nd(2)-O(48)	134.7(4)	O(42)-Nd(2)-O(47)	74.1(4)	
O(45)-Nd(2)-O(43)	110.2(4)	O(48)-Nd(2)-O(47)	80.5(5)	
O(46)-Nd(2)-O(43)	110.8(4)	O(43)-Nd(2)-O(47)	135.5(4)	
O(42)-Nd(2)-O(43)	70.0(4)	O(49)-Nd(2)-O(47)	146.5(5)	
O(48)-Nd(2)-O(43)	143.9(4)	O(44)-Nd(2)-O(47)	76.9(4)	
O(45)-Nd(2)-O(49)	68.9(5)	O(45)-Nd(2)-O(50)	116.6(4)	
O(46)-Nd(2)-O(49)	117.1(5)	O(46)-Nd(2)-O(50)	70.5(4)	
O(42)-Nd(2)-O(49)	138.5(5)	O(42)-Nd(2)-O(50)	102.9(4)	
O(48)-Nd(2)-O(49)	77.2(5)	O(48)-Nd(2)-O(50)	78.7(4)	
O(43)-Nd(2)-O(49)	70.3(5)	O(43)-Nd(2)-O(50)	68.8(4)	
O(45)-Nd(2)-O(44)	68.7(4)	O(49)-Nd(2)-O(50)	50.7(5)	
O(46)-Nd(2)-O(44)	137.8(4)	O(44)-Nd(2)-O(50)	135.4(4)	
O(42)-Nd(2)-O(44)	73.2(4)	O(47)-Nd(2)-O(50)	146.3(5)	
O(48)-Nd(2)-O(44)	136.0(4)	O(49)-C(1)-O(50)	122.2(13)	
O(43)-Nd(2)-O(44)	68.3(4)	O(49)-C(1)-O(50)#1	122.2(13)	
O(49)-Nd(2)-O(44)	102.6(5)	O(50)-C(1)-O(50)#1	115(3)	

Symmetry code for 2: # = x, -y, z.

Bi(1)-O(32)#1	2.143(14)	W(10)-O(25)#1	1.72(2)
Bi(1)-O(32)	2.143(14)	W(10)-O(25)	1.72(2)
Bi(1)-O(33)	2.15(2)	W(10)-O(27)#1	2.02(2)
Bi(2)-O(53)	2.147(19)	W(10)-O(27)	2.02(2)
Bi(2)-O(84)	2.17(2)	W(10)-O(28)	2.37(2)
Bi(2)-O(85)#1	2.351(17)	W(15)-O(30)	1.60(3)
Bi(2)-O(85)	2.351(16)	W(15)-O(27)	1.86(2)
Bi(2)-O(83)#1	2.681(17)	W(15)-O(57)	1.88(2)
Bi(2)-O(83)	2.681(17)	W(15)-O(31)	1.919(18)
Bi(4)-O(84)	2.133(13)	W(15)-O(29)	1.924(7)
Bi(4)-O(55)	2.217(13)	W(15)-O(32)	2.231(17)
Bi(4)-O(28)	2.314(16)	W(17)-O(37)	1.66(3)
Bi(4)-O(25)	2.49(2)	W(17)-O(40)	1.73(2)
Bi(4)-O(85)	2.573(19)	W(17)-O(36)	1.93(2)
Bi(4)-O(78)	2.691(16)	W(17)-O(38)	1.961(14)
Bi(5)-O(55)#1	2.099(16)	W(17)-O(41)#1	2.08(2)
Bi(5)-O(55)	2.099(16)	W(17)-O(33)	2.206(14)
Bi(5)-O(28)	2.24(2)	La(1)-O(89)#1	2.525(19)
Bi(7)-O(43)	2.15(2)	La(1)-O(89)	2.525(19)
Bi(7)-O(55)	2.160(14)	La(1)-O(53)	2.55(3)
Bi(7)-O(78)	2.307(16)	La(1)-O(52)	2.56(3)
Bi(7)-O(56)	2.354(19)	La(1)-O(50)#1	2.569(17)
Bi(7)-O(44)	2.703(14)	La(1)-O(50)	2.569(17)
W(7)-O(34)	1.67(2)	La(1)-O(51)	2.59(3)
W(7)-O(35)	1.72(2)	La(1)-O(83)	2.601(17)
W(7)-O(36)	1.92(2)	La(1)-O(83)#1	2.601(17)
W(7)-O(31)	2.01(2)	La(2)-O(46)	2.47(2)
W(7)-O(61)	2.05(2)	La(2)-O(45)	2.52(2)
W(7)-O(32)	2.156(16)	La(2)-O(43)	2.546(17)
W(8)-O(62)	1.65(4)	La(2)-O(42)	2.553(17)
W(8)-O(41)	1.810(19)	La(2)-O(48)	2.55(2)
W(8)-O(41)#1	1.810(19)	La(2)-O(49)	2.572(4)
W(8)-O(60)#1	1.95(2)	La(2)-O(50)	2.604(17)
W(8)-O(60)	1.95(2)	La(2)-O(44)	2.62(2)
W(8)-O(33)	2.33(2)	La(2)-O(47)	2.641(18)
W(9)-O(59)	1.65(3)	O(49)-C(1)	1.24(4)
W(9)-O(61)	1.87(2)	O(50)-C(1)	1.24(2)
W(9)-O(60)	1.87(2)	O(32)#1-Bi(1)-O(32)	88.2(9)
W(9)-O(58)	1.914(7)	O(32)#1-Bi(1)-O(33)	87.3(6)
W(9)-O(57)	2.00(2)	O(32)-Bi(1)-O(33)	87.3(6)
W(9)-O(32)	2.295(17)	O(53)-Bi(2)-O(84)	84.3(9)
W(10)-O(26)	1.68(3)	O(53)-Bi(2)-O(85)#1	88.8(5)

Table S3. Selected bond lengths [Å] and bond angles (°) for the compound **3**.

O(84)-Bi(2)-O(85)#1	70.8(5)	O(34)-W(7)-O(31)	93.9(8)
O(53)-Bi(2)-O(85)	88.8(5)	O(35)-W(7)-O(31)	94.4(8)
O(84)-Bi(2)-O(85)	70.8(5)	O(36)-W(7)-O(31)	160.2(7)
O(85)#1-Bi(2)-O(85)	141.5(10)	O(34)-W(7)-O(61)	158.6(8)
O(53)-Bi(2)-O(83)#1	71.7(7)	O(35)-W(7)-O(61)	97.2(11)
O(84)-Bi(2)-O(83)#1	135.8(5)	O(36)-W(7)-O(61)	86.0(8)
O(85)#1-Bi(2)-O(83)#1	72.1(6)	O(31)-W(7)-O(61)	81.9(8)
O(85)-Bi(2)-O(83)#1	142.1(6)	O(34)-W(7)-O(32)	87.1(7)
O(53)-Bi(2)-O(83)	71.7(7)	O(35)-W(7)-O(32)	164.1(8)
O(84)-Bi(2)-O(83)	135.8(5)	O(36)-W(7)-O(32)	88.1(7)
O(85)#1-Bi(2)-O(83)	142.1(6)	O(31)-W(7)-O(32)	73.2(7)
O(85)-Bi(2)-O(83)	72.1(6)	O(61)-W(7)-O(32)	71.6(7)
O(83)#1-Bi(2)-O(83)	71.0(7)	O(62)-W(8)-O(41)	101.4(10)
O(84)-Bi(4)-O(55)	90.5(7)	O(62)-W(8)-O(41)#1	101.4(10)
O(84)-Bi(4)-O(28)	71.8(7)	O(41)-W(8)-O(41)#1	97.1(11)
O(55)-Bi(4)-O(28)	72.9(6)	O(62)-W(8)-O(60)#1	100.4(11)
O(84)-Bi(4)-O(25)	91.0(7)	O(41)-W(8)-O(60)#1	86.3(9)
O(55)-Bi(4)-O(25)	139.1(7)	O(41)#1-W(8)-O(60)#1	156.8(10)
O(28)-Bi(4)-O(25)	68.8(7)	O(62)-W(8)-O(60)	100.4(11)
O(84)-Bi(4)-O(85)	66.9(7)	O(41)-W(8)-O(60)	156.8(10)
O(55)-Bi(4)-O(85)	110.8(6)	O(41)#1-W(8)-O(60)	86.3(9)
O(28)-Bi(4)-O(85)	138.6(6)	O(60)#1-W(8)-O(60)	82.0(12)
O(25)-Bi(4)-O(85)	107.3(7)	O(62)-W(8)-O(33)	172.4(13)
O(84)-Bi(4)-O(78)	110.2(6)	O(41)-W(8)-O(33)	73.7(7)
O(55)-Bi(4)-O(78)	65.0(5)	O(41)#1-W(8)-O(33)	73.7(7)
O(28)-Bi(4)-O(78)	137.8(6)	O(60)#1-W(8)-O(33)	85.3(8)
O(25)-Bi(4)-O(78)	149.4(6)	O(60)-W(8)-O(33)	85.3(8)
O(85)-Bi(4)-O(78)	64.5(5)	O(59)-W(9)-O(61)	99.7(11)
O(55)#1-Bi(5)-O(55)	89.0(10)	O(59)-W(9)-O(60)	101.4(11)
O(55)#1-Bi(5)-O(28)	76.6(6)	O(61)-W(9)-O(60)	92.2(9)
O(55)-Bi(5)-O(28)	76.6(6)	O(59)-W(9)-O(58)	100.1(12)
O(43)-Bi(7)-O(55)	84.5(7)	O(61)-W(9)-O(58)	160.1(10)
O(43)-Bi(7)-O(78)	88.3(7)	O(60)-W(9)-O(58)	86.1(11)
O(55)-Bi(7)-O(78)	73.2(6)	O(59)-W(9)-O(57)	98.8(10)
O(43)-Bi(7)-O(56)	92.5(7)	O(61)-W(9)-O(57)	87.0(8)
O(55)-Bi(7)-O(56)	72.5(5)	O(60)-W(9)-O(57)	159.6(8)
O(78)-Bi(7)-O(56)	145.4(6)	O(58)-W(9)-O(57)	87.8(10)
O(43)-Bi(7)-O(44)	71.5(6)	O(59)-W(9)-O(32)	167.5(9)
O(55)-Bi(7)-O(44)	136.6(5)	O(61)-W(9)-O(32)	71.7(7)
O(78)-Bi(7)-O(44)	138.7(6)	O(60)-W(9)-O(32)	88.2(8)
O(56)-Bi(7)-O(44)	73.1(5)	O(58)-W(9)-O(32)	88.4(9)
O(34)-W(7)-O(35)	104.0(11)	O(57)-W(9)-O(32)	72.2(7)
O(34)-W(7)-O(36)	91.7(9)	O(26)-W(10)-O(25)#1	100.1(9)
O(35)-W(7)-O(36)	102.7(9)	O(26)-W(10)-O(25)	100.1(9)

O(25)#1-W(10)-O(25)	95.1(15)	O(89)#1-La(1)-O(53)	108.5(5)
O(26)-W(10)-O(27)#1	95.5(9)	O(89)-La(1)-O(53)	108.5(5)
O(25)#1-W(10)-O(27)#1	92.2(9)	O(89)#1-La(1)-O(52)	72.3(4)
O(25)-W(10)-O(27)#1	161.3(8)	O(89)-La(1)-O(52)	72.3(4)
O(26)-W(10)-O(27)	95.5(9)	O(53)-La(1)-O(52)	146.2(9)
O(25)#1-W(10)-O(27)	161.3(8)	O(89)#1-La(1)-O(50)#1	70.1(5)
O(25)-W(10)-O(27)	92.2(9)	O(89)-La(1)-O(50)#1	115.6(5)
O(27)#1-W(10)-O(27)	76.0(9)	O(53)-La(1)-O(50)#1	70.1(6)
O(26)-W(10)-O(28)	177.5(12)	O(52)-La(1)-O(50)#1	79.1(9)
O(25)#1-W(10)-O(28)	81.5(8)	O(89)#1-La(1)-O(50)	115.6(5)
O(25)-W(10)-O(28)	81.5(8)	O(89)-La(1)-O(50)	70.1(5)
O(27)#1-W(10)-O(28)	82.5(7)	O(53)-La(1)-O(50)	70.1(6)
O(27)-W(10)-O(28)	82.5(7)	O(52)-La(1)-O(50)	79.1(9)
O(30)-W(15)-O(27)	104.7(10)	O(50)#1-La(1)-O(50)	48.3(7)
O(30)-W(15)-O(57)	98.1(10)	O(89)#1-La(1)-O(51)	80.5(5)
O(27)-W(15)-O(57)	156.9(8)	O(89)-La(1)-O(51)	80.5(5)
O(30)-W(15)-O(31)	98.4(9)	O(53)-La(1)-O(51)	133.5(8)
O(27)-W(15)-O(31)	92.1(7)	O(52)-La(1)-O(51)	80.3(11)
O(57)-W(15)-O(31)	87.9(8)	O(50)#1-La(1)-O(51)	148.0(6)
O(30)-W(15)-O(29)	100.3(10)	O(50)-La(1)-O(51)	148.0(6)
O(27)-W(15)-O(29)	85.5(9)	O(89)#1-La(1)-O(83)	137.7(5)
O(57)-W(15)-O(29)	87.2(10)	O(89)-La(1)-O(83)	66.9(5)
O(31)-W(15)-O(29)	161.1(9)	O(53)-La(1)-O(83)	67.4(5)
O(30)-W(15)-O(32)	169.6(9)	O(52)-La(1)-O(83)	135.2(6)
O(27)-W(15)-O(32)	82.1(7)	O(50)#1-La(1)-O(83)	135.2(6)
O(57)-W(15)-O(32)	75.8(7)	O(50)-La(1)-O(83)	102.7(5)
O(31)-W(15)-O(32)	73.1(7)	O(51)-La(1)-O(83)	75.8(7)
O(29)-W(15)-O(32)	88.0(8)	O(89)#1-La(1)-O(83)#1	66.9(5)
O(37)-W(17)-O(40)	105.3(10)	O(89)-La(1)-O(83)#1	137.7(5)
O(37)-W(17)-O(36)	93.9(9)	O(53)-La(1)-O(83)#1	67.4(5)
O(40)-W(17)-O(36)	99.5(8)	O(52)-La(1)-O(83)#1	135.2(6)
O(37)-W(17)-O(38)	92.9(10)	O(50)#1-La(1)-O(83)#1	102.7(5)
O(40)-W(17)-O(38)	97.5(9)	O(50)-La(1)-O(83)#1	135.2(6)
O(36)-W(17)-O(38)	159.3(8)	O(51)-La(1)-O(83)#1	75.8(7)
O(37)-W(17)-O(41)#1	160.3(8)	O(83)-La(1)-O(83)#1	73.5(6)
O(40)-W(17)-O(41)#1	94.4(10)	O(46)-La(2)-O(45)	140.9(6)
O(36)-W(17)-O(41)#1	82.9(8)	O(46)-La(2)-O(43)	110.5(6)
O(38)-W(17)-O(41)#1	84.1(9)	O(45)-La(2)-O(43)	107.9(6)
O(37)-W(17)-O(33)	88.6(8)	O(46)-La(2)-O(42)	66.1(6)
O(40)-W(17)-O(33)	164.2(10)	O(45)-La(2)-O(42)	137.2(6)
O(36)-W(17)-O(33)	86.7(7)	O(43)-La(2)-O(42)	69.7(5)
O(38)-W(17)-O(33)	74.0(7)	O(46)-La(2)-O(48)	71.2(7)
O(41)#1-W(17)-O(33)	71.9(8)	O(45)-La(2)-O(48)	73.4(8)
O(89)#1-La(1)-O(89)	142.0(9)	O(43)-La(2)-O(48)	143.9(7)

O(42)-La(2)-O(48)	134.2(7)	O(42)-La(2)-O(44)	75.0(5)
O(46)-La(2)-O(49)	117.2(7)	O(48)-La(2)-O(44)	136.2(6)
O(45)-La(2)-O(49)	70.0(7)	O(49)-La(2)-O(44)	101.6(7)
O(43)-La(2)-O(49)	69.6(7)	O(50)-La(2)-O(44)	135.0(5)
O(42)-La(2)-O(49)	137.0(6)	O(46)-La(2)-O(47)	79.1(7)
O(48)-La(2)-O(49)	77.7(7)	O(45)-La(2)-O(47)	79.6(6)
O(46)-La(2)-O(50)	71.0(6)	O(43)-La(2)-O(47)	134.4(7)
O(45)-La(2)-O(50)	116.8(6)	O(42)-La(2)-O(47)	75.0(6)
O(43)-La(2)-O(50)	69.8(6)	O(48)-La(2)-O(47)	81.6(7)
O(42)-La(2)-O(50)	102.7(5)	O(49)-La(2)-O(47)	147.0(7)
O(48)-La(2)-O(50)	77.6(6)	O(50)-La(2)-O(47)	147.7(7)
O(49)-La(2)-O(50)	49.5(7)	O(44)-La(2)-O(47)	76.3(7)
O(46)-La(2)-O(44)	138.1(5)	O(50)#1-C(1)-O(50)	116(3)
O(45)-La(2)-O(44)	65.7(6)	O(50)#1-C(1)-O(49)	121.8(15)
O(43)-La(2)-O(44)	67.4(6)	O(50)-C(1)-O(49)	121.8(15)

Symmetry code for 3: # = x, -y, z.