SUPPORTING INFORMATION

Effects of Alkyl Chain Length and Anion Size on Thermal and Structural Properties for 1-Alkyl-3-methylimidazolium Hexafluorocomplex Salts (C_x MImAF₆, x = 14, 16, and 18; A = P, As, Sb, Nb, and Ta)

Fei Xu, Kazuhiko Matsumoto^{*}, Rika Hagiwara

Graduate School of Energy Science, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

* Email: k-matsumoto@energy.kyoto-u.ac.jp

Figure S1 Infra-red spectra of $C_{14}MImAF_6$ (A = P, As, Sb, Nb, and Ta).

Figure S2 Infra-red spectra of $C_{16}MImAF_6$ (A = P, As, Sb, Nb, and Ta).

Figure S3 Infra-red spectra of $C_{18}MImAF_6$ (A = P, As, Sb, Nb, and Ta).

Figure S4 Raman spectra of $C_{14}MImAF_6$ (A = P, As, Sb, Nb, and Ta).

Figure S5 Raman spectra of $C_{16}MImAF_6$ (A = P, As, Sb, Nb, and Ta).

Figure S6 Raman spectra of $C_{18}MImAF_6$ (A = P, As, Sb, Nb, and Ta).

Figure S7 Thermogravimetric curves of $C_{14}MImAF_6$ (A = P, As, Sb, Nb, and Ta). The temperatures where the samples lose 10 % weight are 351.0 °C for $C_{14}MImPF_6$, 345.6 °C for $C_{14}MImAsF_6$, 340.5 °C for $C_{14}MImSbF_6$, 328.5 °C for $C_{14}MImNbF_6$, and 342.5 °C for $C_{14}MImTaF_6$.

Figure S8 Thermogravimetric curves of $C_{16}MImAF_6$ (A = P, As, Sb, Nb, and Ta). The temperatures where the samples lose 10 % weight are 351.2 °C for $C_{16}MImPF_6$, 336.2 °C for $C_{16}MImAsF_6$, 345.2 °C for $C_{16}MImSbF_6$, 307.8 °C for $C_{16}MImNbF_6$, and 337.2 °C for $C_{16}MImTaF_6$.

Figure S9 Thermogravimetric curves of $C_{18}MImAF_6$ (A = P, As, Sb, Nb, and Ta). The temperatures where the samples lose 10 % weight are 343.5 °C for $C_{18}MImPF_6$, 342.7 °C for $C_{18}MImAsF_6$, 329.3 °C for $C_{18}MImSbF_6$, 314.9 °C for $C_{18}MImNbF_6$, and 332.3 °C for $C_{18}MImTaF_6$.

Figure S10 Differential scanning calorimetric curves (heating process) for $C_{14}MImAF_6$ (A = P, As, Sb, Nb, and Ta).

Figure S11 Differential scanning calorimetric curves (heating process) for $C_{16}MImAF_6$ (A = P, As, Sb, Nb, and Ta).

Figure S12 Polarized optical microscopic textures of $C_{14}MImPF_6$ (67 °C).

Figure S13 Polarized optical microscopic textures of (a) $C_{16}MImPF_6$ at 100 °C, (b) $C_{16}MImAsF_6$ at 100 °C, (c) $C_{16}MImSbF_6$ at 68 °C, (d) $C_{16}MImNbF_6$ at 70 °C, and $C_{16}MImTaF_6$ at 70 °C.

Figure S14 Polarized optical microscopic textures of (a) $C_{18}MImPF_6$ at 100 °C, (b) $C_{18}MImAsF_6$ at 100 °C, (c) $C_{18}MImSbF_6$ at 100 °C, and (d) $C_{18}MImNbF_6$ at 100 °C.

Figure S15 X-ray diffraction patterns ($2^{\circ} < 2\theta < 30^{\circ}$) for C₁₄MImAF₆ (A = P, As, Sb,

Nb, and Ta) in the crystalline phase at 40 $^{\circ}\mathrm{C}.$

Figure S16 X-ray diffraction patterns ($2^{\circ} < 2\theta < 30^{\circ}$) for C₁₆MImAF₆ (A = P, As, Sb, Nb, and Ta) in the crystalline phase at 40 °C.

Figure S17 X-ray diffraction patterns ($2^{\circ} < 2\theta < 30^{\circ}$) for C₁₆MImAF₆ (A = P and

As) in the liquid crystalline mesophase at 100 °C.

Figure S18 Layer spacings of $C_{16}MImAF_6$ (A = P and As) in the liquid crystalline mesophase.

	Р	As	Sb	Nb	Та	
formula	$C_{22}H_{43}N_2F_6P$	$C_{22}H_{43}N_2F_6As$	$C_{22}H_{43}N_2F_6Sb$	$C_{22}H_{43}N_2F_6Nb \\$	$C_{22}H_{43}N_2F_6Ta$	
fw	480.55	524.50	571.34	542.49	630.53	
crystal color	colorless	colorless	colorless	colorless	colorless	
crystal size, mm	0.80×0.30×0.05	0.70×0.20×0.05	0.75×0.30×0.03	0.70×0.30×0.05	0.43×0.13×0.04	
T/°C	25	25	25	25	25	
crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	
space group	$P2_{1}/a$	$P2_{1}/a$	$P2_{1}/a$	$P2_{1}/a$	$P2_{1}/a$	
a/Å	9.6506(16)	9.5645(13)	9.6973(7)	9.5882(11)	9.6813(8)	
<i>b</i> /Å	9.5436(17)	9.8620(15)	9.9933(7)	10.0041(14)	10.0074(9)	
$c/\text{\AA}$	29.633(5)	28.969(4)	28.991(2)	28.871(3)	29.014(3)	
$eta /^{\circ}$	92.169(4)	94.400(3)	95.2424(16)	95.094(3)	95.112(2)	
$V/\text{\AA}^3$	2727.3(8)	2724.5(7)	2797.8(3)	2758.4(6)	2799.8(4)	
Ζ	4	4	4	4	4	
$ ho_{ m calcd}/ m g~cm^{-3}$	1.170	1.279	1.356	1.306	1.496	
F(000)	1032	1104	1176	1136	1264	
μ/mm^{-1}	0.152	1.299	1.036	0.487	3.976	
$\lambda/\text{\AA}$	0.71073	0.71073	0.71073	0.71073	0.71073	
reflns collected/unique	18736/4276	20574/4779	21577/4925	21340/4855	20501/4902	
$R_1(F_0)^a$	0.1039	0.0886	0.0500	0.0885	0.0469	
$wR_2(F_o^2)^b$	0.3062	0.2720	0.1514	0.2576	0.1136	
$R_{\rm int}$	0.0524	0.0546	0.0302	0.0551	0.0524	
${}^{a}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} \text{ for } I > 2\sigma(I). {}^{b}wR_{2} = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}]\}^{1/2} \text{ for } I > 2\sigma(I).$						

Table S1	Summary of crystal data and refinement results for $C_{18}MImAF_6$ (A = P, As, Sb, Nb, and Ta) at 25 °C.	
----------	--	--

	Р	As	Sb	Nb	Та	
formula	$C_{22}H_{43}N_2F_6P$	$C_{22}H_{43}N_2F_6As$	$C_{22}H_{43}N_2F_6Sb$	$C_{22}H_{43}N_2F_6Nb \\$	$C_{22}H_{43}N_2F_6Ta$	
fw	480.55	524.50	571.34	542.49	630.53	
crystal color	colorless	colorless	colorless	colorless	colorless	
crystal size, mm	0.80×0.30×0.05	0.70×0.20×0.05	0.75×0.30×0.03	0.70×0.30×0.05	0.43×0.13×0.04	
T/°C	55	55	55	55	55	
crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	
space group	$P2_{1}/a$	$P2_{1}/a$	$P2_{1}/a$	$P2_{1}/a$	$P2_{1}/a$	
a/Å	9.740(2)	9.7983(11)	9.9860(13)	9.838(3)	9.9490(10)	
<i>b</i> /Å	9.526(2)	9.6239(13)	9.8314(14)	9.772(3)	9.7952(10)	
$c/\text{\AA}$	29.916(7)	29.575(3)	29.360(4)	29.126(8)	29.289(3)	
$eta /^{\circ}$	90.578(5)	91.6869(18)	92.795(2)	93.286(6)	92.810(2)	
$V/\text{\AA}^3$	2775.5(11)	2787.6(6)	2879.0(7)	2795.5(13)	2850.9(5)	
Ζ	4	4	4	4	4	
$ ho_{ m calcd}/ m g~cm^{-3}$	1.150	1.250	1.318	1.289	1.469	
F(000)	1032	1104	1176	1136	1264	
μ/mm^{-1}	0.150	1.270	1.007	0.480	3.905	
$\lambda/\text{\AA}$	0.71073	0.71073	0.71073	0.71073	0.71073	
reflns collected/unique	17469/3979	21446/4899	22176/5061	18406/4671	22069/5006	
$R_1(F_0)^a$	0.1341	0.0853	0.0691	0.0691 0.0832		
$wR_2(F_o^2)^b$	0.3577	0.2410	0.2048	0.2090	0.1190	
$R_{\rm int}$	0.0494	0.0526	0.0485	0.0639	0.0505	
${}^{a}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} \text{ for } I > 2\sigma(I). {}^{b}wR_{2} = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}]\}^{1/2} \text{ for } I > 2\sigma(I).$						

Table S2	Summary of crystal data and refinement results for $C_{18}MImAF_6$ (A = P, As, Sb, Nb, and Ta) at 55 °C.	
----------	--	--

Table S3 Summary of geometrical parameters related to overlapped alkyl chain lengths in the C_x MImPF₆ (x = 12, 14, and 18) crystal

	<i>x</i> = 12 (–150 °C)	<i>x</i> = 14 (–98 °C)	<i>x</i> = 18 (–100 °C)
$l_{\rm N1-Cterminal}$ (= bond length of N1-C _{teminal}) / Å ^{<i>a</i>}	14.302	16.848	21.945
$l_{\text{Cterminal'-N1}}$ (= bond length of C _{teminal} -N1') / Å	5.364	5.416	5.425
$\alpha_{\text{N1-Cterminal-N1'}}$ (= bond angle of N1-C _{teminal} -N1') / °	104.63	104.45	104.18
$\alpha_{\text{Cterminal-N1-Cterminal'}}$ (= bond angle of C _{teminal} -N1-C _{teminal} ') / °	75.37	75.55	75.82
l_{over} (= overlapped alkyl chain length) / Å ^b	12.947	15.497	20.616
l_{alkyl} (= alkyl chain interspacing) / Å ^{<i>c</i>}	5.190	5.245	5.260

structures.

^{*a*} C_{teminal} is the carbon atom at the end of the long alkyl chain.

^{*b*} The overlapped alkyl chain length l_{over} was calculated by the following equation:

 $l_{\text{over}} = l_{\text{N1-Cterminal}} - l_{\text{Cterminal'-N1}} \times \cos(\alpha_{\text{Cterminal-N1-Cterminal'}}).$

^{*c*} The alkyl chain interspacing l_{alkyl} was calculated by the following equation:

 $l_{\text{alkyl}} = l_{\text{Cterminal'-N1}} \times \sin(\alpha_{\text{Cterminal-N1-Cterminal'}}).$

Table S4 Summary of geometrical parameters related to overlapped alkyl chain lengths for the $C_{18}MImAF_6$ (A = P, As, Sb, Nb, and Ta)

	Р	As	Sb	Nb	Та
$l_{\rm N1-C23}$ (= bond length of N1-C ₂₃) / Å	21.945	21.933	21.907	21.889	21.886
$l_{C23'-N1}$ (= bond length of C ₂₃ -N1') / Å	5.425	5.443	5.500	5.490	5.506
$\alpha_{\text{N1-C23-N1}}$ (= bond angle of N1-C ₂₃ -N1') / °	104.18	103.25	101.38	101.35	100.93
$\alpha_{C23-N1-C23'}$ (= bond angle of C ₂₃ -N1-C ₂₃ ') / °	75.82	76.75	78.62	78.65	79.07
$l_{\rm over}$ (= overlapped alkyl chain length) / Å ^{<i>a</i>}	20.616	20.685	20.822	20.809	20.842
l_{alkyl} (= alkyl chain interspacing) / Å ^b	5.260	5.298	5.392	5.383	5.406
$c imes \sin\!eta$	28.343	27.985	25.939	27.069	26.536

crystal structures at -100 °C.

^{*a*} The overlapped alkyl chain length l_{over} was calculated by the following equation:

 $l_{\text{over}} = l_{\text{N1-C23}} - l_{\text{C23'-N1}} \times \cos(\alpha_{\text{C23-N1-C23'}}).$

 b The alkyl chain interspacing $l_{\rm alkyl}$ was calculated by the following equation:

 $l_{\text{alkyl}} = l_{\text{C23'-N1}} \times \sin(\alpha_{\text{C23-N1-C23'}}).$