Electronic Supplementary Information

Zinc complexes supported by claw-type aminophenolate ligands: synthesis, characterization and catalysis in the ring-opening polymerization of *rac*-lactide

Shaodi Song,^a Xingyu Zhang,^a Haiyan Ma^{*,a} and Yang Yang ^a

 ^a Shanghai Key laboratory of Functional Materials Chemistry, and Laboratory of Organometallic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China. Fax/Tel: +86 21 64253519.
 E-mail: <u>haiyanma@ecust.edu.cn</u> (H. Ma).

Contents:

- Table S1.
 ROP of lactides initiated by complex 2a under various conditions
- **Table S2.**The crystal data and structure refinement of complex 4b
- **Table S3.**The selected bond lengths (Å) and angles (°) of complex 4b
- **Fig. S1.** ¹H NMR spectrum of oligomer of *rac*-LA initiated by $2a/i^{i}$ PrOH
- Fig. S2. ¹H NMR spectra of (A) oligomer of *rac*-LA initiated by 4b and (B)
 3-*tert*-butyl-2-methoxy-5-methylbenzyl alcohol
- **Fig. S3.** ¹H NMR spectrum of oligomer of *rac*-LA initiated by 4b/iPrOH
- Fig. S4. ESI-TOF spectra of oligomer of *rac*-LA initiated by complex 2a
- Fig. S5. The methine region of homonuclear decoupled ¹H NMR spectrum of poly(rac-LA) prepared with **1a** in the presence of ^{*i*}PrOH in toluene.

Run	$[LA]_0/[Zn]_0$	Solv.	Т	t	Conv. ^b	$M_{n, calcd.}^{c}$	$M_{\rm n}^{\ d}$	PDI^d	$P_{\rm m}^{\ e}$
	$\left[{^{i}} \operatorname{PrOH} \right]_{0}^{a}$		(°C)	(h)	(%)	(10^{-4})	(10^{-4})		
1	200:1:0	Tol.	24	3	95	2.74	9.34	1.55	0.65
2	200:1:1	Tol.	24	1	98	2.82	4.74	1.46	0.65
3	200:1:1 ^g	Tol.	24	0.75	91	2.62	4.10	1.47	0.66
4	200:1:1 ^{<i>h</i>}	Tol.	24	1	97	2.80	4.85	1.39	0.63
5	400:1:0	Tol.	25	8	93	5.36	28.43	1.23	0.65
6	400:1:1	Tol.	25	1.25	97	5.59	8.96	1.34	0.61
7	200:1:0	Tol.	-39	96	12	0.35	^f	f	f
8	200:1:1	Tol.	-39	96	84	2.42	5.13	1.35	0.62
9	200:1:1	Tol.	0	12	96	2.77	3.98	1.36	0.63
10	200:1:0	DMC	25	3	68	1.96	12.64	1.34	0.60
11	200:1:1	DMC	25	0.75	95	2.74	3.05	1.23	0.60
12	200:1:1	DMC	0	12	83	2.39	5.83	1.34	0.63
13	200:1:1	DMC	-39	72	86	2.48	1.14	1.26	0.62
14	200:1:1	DMC	60	0.75	83	2.39	17.25	1.20	0.61
15 ^{<i>i</i>}	200:1:1	Tol.	25	0.75	97	2.80	4.94	1.33	100
16 ^{<i>i</i>}	200:1:0	Tol.	25	2	96	2.77	f	f	f

Table S1. ROP of lactides initiated by complex 2a under various conditions

^{*a*} [*rac*-LA]₀ = 1.0 M, [Zn]₀ = 0.005 M. ^{*b*} Determined by ¹H NMR spectroscopy. ^{*c*} $M_{n,calcd}$ = ([LA]₀/[Zn]₀) × 144.13 × conv.%. ^{*d*} Determined by GPC. ^{*e*} P_m is the probability of forming a new *m*-dyad, determined by homonuclear decoupled ¹H NMR spectroscopy. ^{*f*} Not detected. ^g Complex **2a** and ^{*i*}PrOH were mixed together and then monomer was added. ^{*h*} BnOH was added instead of ^{*i*}PrOH. ^{*i*} Polymerization of *L*-LA.

4 b							
Empirical formula	$C_{57}H_{78}N_2O_4Zn \cdot (0.5 C_6H_{14})$						
Formula weight	963.67						
Temp (K)	293(2) K						
Crystal size (mm)	0.407 x 0.361 x 0.257						
Crystal system	Triclinic						
Space group	P-1						
a (Å)	14.726(2)						
b (Å)	14.998(2)						
c (Å)	15.817(2)						
α (°)	63.485(3)						
β (°)	67.435(3)						
γ (°)	75.481(3)						
Volume(Å ³)	2873.0(7)						
Z	2						
Density $_{calc}$ (mg/m ³)	1.114						
Abs coeff (mm^{-1})	0.471						
F(000)	1042						
θ range (°)	1.68 to 25.50						
Data collected (hkl)	± 17 , -18 to 17, -18 to 19						
Reflns collected/unique	15287 / 10556						
R(int)	0.1084						
Max. and min. transmn.	1.0000 and 0.3091						
Data / restrains / para	10556 / 4 / 622						
Final R_1 , w R_2 [I > 2 σ (I)]	0.0720, 0.1511						
R_1 , w R_2 (all data)	0.1531, 0.1823						
Goodness-of-fit on F ²	0.839						
$\Delta \rho$ max, min/e Å ⁻³	0.575 and -0.589						

 Table S2.
 The crystal data and structure refinement of complex 4b

Table S3. The selected bond lengths (Å) and angles (°) of complex 4b

4b								
Zn-O(2)	1.863(3)	O(4)-C(57)	1.432(6)					
Zn-O(1)	1.939(3)	N(1)-C(2)	1.479(5)					
Zn-N(1)	2.097(4)	N(1)-C(3)	1.493(5)					
Zn-N(2)	2.109(4)	N(1)-C(20)	1.515(5)					
O(1)-C(22)	1.322(5)	N(2)-C(16)	1.437(7)					
O(2)-C(45)	1.400(5)	N(2)-C(18)	1.480(7)					
O(3)-C(5)	1.392(5)	N(2)-C(1)	1.493(6)					
O(3)-C(15)	1.431(6)	C(1)-C(2)	1.501(7)					
O(4)-C(47)	1.401(5)							
O(2)-Zn-O(1)	111.16(14)	C(2)-N(1)-Zn	106.6(3)					
O(2)-Zn-N(1)	134.74(15)	C(3)-N(1)-Zn	120.3(3)					
O(1)-Zn-N(1)	97.43(13)	C(20)-N(1)-Zn	105.8(2)					
O(2)-Zn-N(2)	113.55(16)	C(16)-N(2)-C(18)	114.1(5)					
O(1)-Zn-N(2)	110.65(16)	C(16)-N(2)-C(1)	108.9(5)					
N(1)-Zn-N(2)	86.11(16)	C(18)-N(2)-C(1)	108.9(5)					
C(22)-O(1)-Zn	124.8(3)	C(16)-N(2)-Zn	110.0(4)					
C(45)-O(2)-Zn	116.8(3)	C(18)-N(2)-Zn	113.6(4)					
C(5)-O(3)-C(15)	113.8(4)	C(1)-N(2)-Zn	100.4(3)					
C(47)-O(4)-C(57)	113.8(4)	N(2)-C(1)-C(2)	112.3(5)					
C(2)-N(1)-C(3)	109.4(3)	N(2)-C(1)-H(1A)	109.1					
C(2)-N(1)-C(20)	109.8(3)	N(1)-C(2)-C(1)	113.5(4)					
C(3)-N(1)-C(20)	104.6(3)	N(1)-C(3)-C(4)	114.6(4)					

Fig. S1. ¹H NMR spectrum of oligomer of *rac*-LA initiated by $2a^{i}$ PrOH (CDCl₃, 400 MHz; [*rac*-LA]₀:[Zn]₀:[^{*i*}PrOH]₀ = 10:1:1; *, proton peaks of ligand).

Fig. S2. ¹H NMR spectra of (**A**) oligomer of *rac*-LA initiated by **4b** and (**B**) 3-*tert*-butyl-2-methoxy-5-methylbenzyl alcohol (CDCl₃, 400 MHz; $[rac-LA]_0$:[**4b**]_0 = 10:1).

Fig. S3. ¹H NMR spectrum of oligomer of *rac*-LA initiated by **4b**/ i PrOH (CDCl₃, 400 MHz; [*rac*-LA]₀:[Zn]₀:[i PrOH]₀ = 30:1:1;).

Fig. S4. ESI-TOF spectra of oligomer of *rac*-LA initiated by complex **2a** $([rac-LA]_0:[2a]_0 = 10:1, in toluene): (A)$ the whole range; (B) Partial enlargement.

Fig. S5. The methine region of homonuclear decoupled ¹H NMR spectrum of poly(rac-LA) prepared with **1a** in the presence of ^{*i*}PrOH in toluene.