Electronic Supporting Information for

Mono- and dinuclear ruthenium(II) 1,6,7,12-tetraazaperylene complexes

Thomas Brietzke, Wulfhard Mickler, Alexandra Kelling and Hans-Jürgen Holdt*

Crystallographic information

$[\textbf{2}](PF_6)_2{\cdot}0.5CH_3CN{\cdot}0.5toluene$

The complex $[2](PF_6)_2 \cdot 0.5CH_3CN \cdot 0.5$ toluene crystallises with one half of a molecule toluene (disordered around the inversion center). The disorder models gave unsatisfactory results. Therefore, the data were corrected for disordered solvent using the SQUEEZE option in PLATON¹.

$[3](PF_6)_2 \cdot 2$ toluene

The solvent molecules toluene in $[3](PF_6)_2$ ·2toluene were refined over two position, with occupancy ratios of 80:20 and 70:30 and a set of geometrical restraints/constraints. (The methyl aryl distances were restrained to standard values by DFIX-instructions and the aromatic rings were constrained to a regular hexagon [d = 1.39] by AFIX 66 - instructions.)

Table S 1 Selected Bond Lengths (Å) and Angles (deg) for $[2](PF_6)_2 \cdot 0.5CH_3CN \cdot 0.5toluene, [3](PF_6)_2 \cdot 2toluene and [4](PF_6)_2 \cdot 3acetone \cdot 0.5H_2O$ as well as the ruthenium and tape distances of the according dimer.

Compound	$[2](PF_6)_2 \cdot 0.5CH_3CN \cdot 0.5toluene$	$[3](PF_6)_2 \cdot 2$ toluene	$[4](PF_6)_2 \cdot 3acetone \cdot 0.5H_2O$
Ru-N(1)	2.057(2)	2.047(2)	2.065(3)
Ru-N(4)	2.062(3)	2.056(3)	2.053(3)
Ru-N(5)	2.048(3)	2.062(3)	2.054(3)
Ru-N(6)	2.060(2)	2.069(2)	2.057(3)
Ru-N(7)	2.073(3)	2.063(3)	2.061(3)
Ru-N(8)	2.056(3)	2.061(3)	2.065(3)
N(1)-Ru- $N(4)$	79.10(10)	79.15(10)	79.19(13)
N(5)-Ru-N(6)	78.52(10)	78.57(10)	78.37(11)
N(7)-Ru-N(8)	78.42(10)	77.98(10)	78.27(12)
Ru∙∙∙Ru	10.83	10.37	10.50
tape \cdots tape ^{<i>a</i>}	3.40(8)	3.38(7)	3.37(3)

^a Distances are between the calculated plains (MERCURY) of the tape moieties using the non-hydrogen atoms only.

¹A. L. Spek (2008) PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands.

UV-Vis absorption

-

Table S 2 Full absorption Data^a of the synthesized mono- and dinuclear ruthenium(II)-complexes.

compound	$\lambda \text{ [nm]} (\epsilon [10^{-4} \text{M}^{-1} \text{cm}^{-1}])$			
[Ru(bpy) ₂ bpym] ²⁺	286 (55.9±0.7), 427 (11.2±0.1)			
[Ru(dmbpy) ₂ bpym] ²⁺	258 (27.6±2.2), 284 (50.7±3.9), 424 (10.6±0.8)			
[Ru(tmbpy) ₂ bpym] ²⁺	206 (62.6±0.1), 267 (42.6±0.1), 288 (61.1±0.1), 418 (14.0±0.2)			
[Ru(dtbbpy) ₂ bpym] ²⁺	249 (27.6±1.0), 258 (28.3±1.1), 286 (52.7±2.2), 421 (10.8±0.3)			
[Ru(dtbbpy) ₂ tpphz] ²⁺	247 (51.6±0.4), 283 (92.7±0.2), 363 (18.5±0.3), 382 (26.8±0.4), 440 (16.2±0.1)			
[Ru(bpy) ₂ dbneil] ²⁺	257 (53.2 \pm 1.0), 285 (79.0 \pm 2.1), 329 (45.7 \pm 0.8), 418 (23.4 \pm 0.3), 440 (25.6 \pm 0.1), 491 (6.1 \pm 0.2), 593 (19.3 \pm 0.1)			
[Ru(dmbpy) ₂ dbneil] ²⁺	233 (61.6 \pm 0.3), 259 (58.0 \pm 0.2), 284 (84.0 \pm 0.1), 328 (46.1 \pm 0.2), 381 (24.7 \pm 0.3), 423 (25.3 \pm 0.2), 444 (25.5 \pm 0.2), 608 (21.1 \pm 0.2)			
[Ru(tmbpy) ₂ dbneil] ²⁺	290 (79.4±0.4), 392 (25.1±0.2), 422 (23.9±0.2), 446 (21.3±0.3), 618 (18.4±0.2)			
[Ru(dtbbpy) ₂ dbneil] ²⁺	259 (55.7±1.5), 285 (82.1±2.0), 328 (45.1±1.2), 392 (24.3±0.7), 423 (25.6±0.7), 441 (24.5±0.7),			
	610 (20.0±0.5)			
$[Ru(bpy)_2 tape]^{2+}$	245 (60.8±3.4), 284 (61.8±3.5), 396 (18.7±0.7), 421 (19.4±0.8), 609 (14.0±0.5)			
$[Ru(phen)_2 tape]^{2+}$	$262\ (78.3 \pm 1.3),\ 389\ (20.5 \pm 0.5),\ 420\ (19.2 \pm 0.4),\ 441\ (15.0 \pm 0.2),\ 606\ (12.7 \pm 0.2)$			
[Ru(dmbpy) ₂ tape] ²⁺	283 (55.3±0.6), 399 (17.4±0.4), 421 (17.0±0.4), 625 (12.5±0.3)			
[Ru(tmbpy) ₂ tape] ²⁺	247 (50.0 \pm 1.5), 287 (60.2 \pm 1.8), 399 (18.4 \pm 0.5), 418 (17.0 \pm 0.4), 640 (12.4 \pm 0.4)			
[Ru(dtbbpy) ₂ tape] ²⁺	284 (60.2±3.0), 399 (18.5±0.7), 422 (18.0±1.0), 626 (13.2±0.1)			
$[{Ru(bpy)_2}_2(\mu-bpym)]^{4+}$	244 (43.1±0.1), 281 (89.1±0.1), 413 (25.2±0.1), 594 (6.2±0.1)			
$[{Ru(dmbpy)_2}_2(\mu-bpym)]^{4+}$	280 (96.2±1.5), 416 (29.9±0.5), 612 (7.9±0.1)			
$[{Ru(tmbpy)_2}_2(\mu-bpym)]^{4+}$	285 (99.0±2.9), 412 (28.9±1.4), 619 (7.2±0.1)			
$[{Ru(dtbbpy)_2}_2(\mu-bpym)]^{4+}$	$255 (49.2 \pm 1.1), 281 (101.0 \pm 1.6), 415 (31.9 \pm 0.6), 617 (7.6 \pm 0.3)$			
$[{Ru(dtbbpy)_2}_2(\mu-tpphz)]^{4+}$	247 (66.1 \pm 1.8), 283 (183.2 \pm 5.3), 352 (31.8 \pm 1.1), 371 (38.7 \pm 1.2), 446 (41.2 \pm 1.0)			
$[{Ru(bpy)_2}_2(\mu-dbneil)]^{4+}$	245 (68.6±3.0), 286 (128.7±4.5), 420 (44.6±2.0), 699 (31.9±1.4)			
$[{Ru(dmbpy)_2}_2(\mu-dbneil)]^{4+}$	249 (68.5±2.1), 285 (130.9±2.9), 422 (44.9±1.5), 716 (35.3±1.1)			
$[{Ru(tmbpy)_2}_2(\mu-dbneil)]^{4+}$	255 (74.1±1.9), 290 (134.6±2.5), 421 (40.4±1.2), 729 (33.5±0.9)			
$[{Ru(dtbbpy)_2}_2(\mu-dbneil)]^{4+}$	249 (68.7±0.6), 286 (131.2±1.8), 423 (44.5±0.8), 721 (33.3±0.7)			
$[\{\operatorname{Ru}(\operatorname{bpy})_2\}_2(\mu\operatorname{-tape})]^{4+}$	252 (65.9±0.5), 284 (102.8±0.5), 398 (29.1±0.2), 746 (28.8±0.5)			
$[{Ru(phen)_2}_2(\mu-tape)]^{4+}$	262 (135.0±3.8), 223 (106.8±3.0), 393 (32.9±0.7), 744 (23.7±0.4).			
$[{Ru(dmbpy)_2}_2(\mu-tape)]^{4+}$	254 (63.7±0.8), 282 (100.5±1.7), 402 (30.6±0.4), 772 (30.1±0.5)			
$[{\rm Ru(tmbpy)}_2]_2(\mu-tape)]^{4+}$	255 (69.6±2.3), 287 (100.3±3.4), 406 (32.1±1.1), 789 (28.6±0.9)			
$[{Ru(dtbbpy)_2}_2(\mu-tape)]^{4+}$	253 (68.8±±2.2), 284 (112.1±3.8), 403 (35.4±0.9), 774 (32.6±0.1).			

^{*a*} Absorption spectra in acetonitrile at 21.5 \pm 0.5 °C. Complexes as PF⁻₆ salts.

Electrochemistry

Table S 3 Potentials for the redox Processes^a of the synthesized mono- and dinuclear ruthenium(II)-complexes.

compound	$\mathrm{E}_{1/2}^{ox}\left(\Delta E_{p} ight)$	$\mathrm{E}_{1/2}^{red}\left(\Delta E_{p} ight)$
[Ru(bpy) ₂ bpym] ²⁺	+1.36 (81)	-1.01 (73), -1.45 (70), -1.69 (73), -2.06 (irr.)
[Ru(dmbpy) ₂ bpym] ²⁺	+1.31(81)	-1.04 (61), -1.54 (66), -1.73 (81), -2.08 (irr.)
[Ru(tmbpy) ₂ bpym] ²⁺	+1.24(81)	-1.07 (75), -1.69 (65), -1.98 (irr.)
[Ru(dtbbpy) ₂ bpym] ²⁺	+1.31(71)	-1.03 (73), -1.54 (63), -1.78 (61), -2.10 (irr.)
[Ru(dtbbpy) ₂ tpphz] ²⁺	+1.22(71)	-1.00 (112), -1.47 (68), -1.68 (irr.), -1.85 (irr.), -2.13 (irr.)
[Ru(bpy) ₂ dbneil] ²⁺	+1.45 (65)	-0.40 (55), -0.55 (51), -0.93 (71), -1.55 (irr.), -1.70 (irr.), -2.14 (irr.)
[Ru(dmbpy) ₂ dbneil] ²⁺	+1.36 (65)	-0.47 (56), -0.58 (51), -0.97 (65), -1.65 (irr.), -1.78 (irr.)
[Ru(tmbpy) ₂ dbneil] ²⁺	+1.36 (91)	-0.52(50), -0.59(49), -1.02(65)
[Ru(dtbbpy) ₂ dbneil] ²⁺	+1.37 (96)	-0.43 (59), -0.54 (56), -0.93 (56), -1.66 (irr.), -1.94 (irr.)
[Ru(bpy) ₂ tape] ²⁺	+1.39(66)	-0.34(68), -0.97(67), -1.58(76)
[Ru(phen) ₂ tape] ²⁺	+1.40(59)	-0.34 (83), -0.92 (68), -1.54 (88), -1.86 (irr.), -2.08 (irr.)
[Ru(dmbpy) ₂ tape] ²⁺	+1.30(71)	-0.36 (71), -0.94 (71), -1.66 (81), -1.94 (irr.)
[Ru(tmbpy) ₂ tape] ²⁺	+1.25 (69)	-0.39 (71), -0.95 (83), -1.84 (irr.)
[Ru(dtbbpy) ₂ tape] ²⁺	+1.31 (76)	-0.36(68), -0.93(65), -1.67(61), -1.93(59)
$[{Ru(bpy)_2}_2(\mu-bpym)]^{4+}$	+1.57 (69), +1.79 (66)	-0.38 (69), -1.06 (66), -1.53 (irr.), -1.79 (irr.), -1.94 (irr.)
$[{Ru(dmbpy)_2}_2(\mu-bpym)]^{4+}$	+1.46 (75), +1.66 (65)	-0.44 (71), -1.12 (75), -1.65 (irr.), -1.88 (irr.), -1.99 (irr.)
$[{Ru(tmbpy)_2}_2(\mu-bpym)]^{4+}$	+1.39 (75), +1.60 (65)	-0.49 (71), -1.16 (76), -1.81 (irr.), -2.06 (irr.), -2.17 (irr.)
$[{Ru(dtbbpy)_2}_2(\mu-bpym)]^{4+}$	+1.46 (106), +1.68 (71)	-0.42 (71), -1.09 (71), -1.69 (101), -1.89 (irr.), -2.00 (irr.)
$[{Ru(dtbbpy)_2}_2(\mu-tpphz)]^{4+}$	+1.24 (72)	-0.67 (73), -1.26 (68)
$[{Ru(bpy)_2}_2(\mu-dbneil)]^{4+}$	+1.49 (60), +1.65 (56)	-0.16 (65) -0.56 (71), -1.17 (irr.), -1.44 (irr.), -1.67 (irr.), -1.76 (irr.)
$[{Ru(dmbpy)_2}_2(\mu-dbneil)]^{4+}$	+1.39 (60), +1.57 (59)	-0.21 (71), -0.61 (71), -1.34 (71), -1.60 (irr.), -1.72 (irr.), -1.83 (irr.),
$[{Ru(tmbpy)_2}_2(\mu-dbneil)]^{4+}$	+1.33(71), +1.52(76)	-0.24 (71), -0.64 (65), -1.38 (71), -1.69 (65), -1.96 (irr.)
$[{Ru(dtbbpy)_2}_2(\mu-dbneil)]^{4+}$	+1.37 (100), +1.52 (71)	-0.19 (65), -0.60 (65), -1.35 (71), -1.60 (55), -1.75 (irr.), -1.85 (irr.)
$[{Ru(bpy)_2}_2(\mu-tape)]^{4+}$	+1.48 (64), +1.64 (63)	+0.03 (64), -0.50 (63), -1.48 (irr.), -1.83 (irr.)
$[{Ru(phen)_2}_2(\mu-tape)]^{4+}$	+1.44 (68), +1.65 (66)	-0.00 (68), -0.53 (76), -1.37 (irr.), -1.86 (irr.)
$[{Ru(dmbpy)_2}_2(\mu-tape)]^{4+}$	+1.34 (71), +1.55 (71)	-0.02 (75), -0.55 (75), -1.60 (91), -1.88 (irr.)
$[{Ru(tmbpy)_2}_2(\mu-tape)]^{4+}$	+1.29 (59), +1.49 (56)	-0.05 (66), -0.59 (68), -1.81 (irr.), -2.09 (irr.)
$[{Ru(dtbbpy)_2}_2(\mu-tape)]^{4+}$	+1.31 (95), +1.55 (86)	-0.01 (71), -0.53 (81), -1.60 (85), -1.92 (irr.)

^{*a*} The potentials are given in V vs SCE in CH₃CN (internal standard Fc/Fc⁺), ΔE_p in mV and the supporting electrolyte is 0.1 M ^{*n*}Bu₄PF₆ at room temperature. Complexes as PF₆⁻ salts. Potentials of irreversible processes were determined by square wave voltammetry.

Stacking interaction in solution

Fig. S 1¹H NMR spectra of $[Ru(bpy)_2 tape](PF_6)_2$ in CD₃CN at various concentrations, from top to bottom: 19.8, 14.5, 10.0, 7.4, 6.0, 4.0 and 2.0 mM.