Supporting Information

A Ternary Cu–Sn–S Cluster Complex

$(NBu_4)[(PEt_2Ph)_3Cu_{19}S_{28}(SnPh)_{12}]$

Andreas Eichhöfer,*^{*a*} Jijun Jiang,^{*a,d*} Sergei Lebedkin,^{*a*} Dieter Fenske,^{*a,b*} Dan McDonald,^{*c*} John

F. Corrigan,^{*c*} Cheng–Yong Su,^{*d*}

^{*}To whom correspondence should be addressed;

[a] Institut für Nanotechnologie

[b] Institut für Anorganische Chemie

Karlsruhe Institut für Technologie (KIT)

Postfach 3640

76021 Karlsruhe (Germany)

Tel. Int + 721-608-26371

Fax: Int + 721-608-26368

e-mail: andreas.eichhoefer@kit.edu

[c] Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7Canada.

[d] Lehn Institute of Functional materials, School of Chemistry and Chemical Engineering,Sun Yat–Sen University, Guangzhou 510275, China.

Table of Content

Table S1: Selected bond lengths [pm] and angles [deg] for (NBu₄)[(PEt₂Ph)₃Cu₁₉S₂₈(SnPh)₁₂] (2).

Figure S1. Measured (black) and simulated (grey) X-ray powder patterns for $[Li(thf)_4]$ [(PEt₂Ph)₃Cu₁₉S₂₈(SnPh)₁₂] (1).

Figure S2. a) Negative- and b) positive-ion ESI-TOF mass spectrum from a DMF/THF solution of $[Li(thf)_4][Cu_{19}S_{28}(SnPh)_{12}(PEt_2Ph)_3]$ (1).

Table S2. Assignment of the observed a) negative and b) positive ions in the ESI-TOF Mass Spectrum of $[\text{Li}(thf)_4][\text{Cu}_{19}\text{S}_{28}(\text{SnPh})_{12}(\text{PEt}_2\text{Ph})_3]$ (1) (as shown in Fig. S2).

Figure S3. Positive-ion ESI-TOF mass spectrum from a DMF/THF solution of $[\text{Li}(thf)_4][\text{Cu}_{19}\text{S}_{28}(\text{SnPh})_{12}(\text{PEt}_2\text{Ph})_3]$ (1) (upper spectrum). Below are shown a simulation of identifiable peaks (For assignment of the peaks see table S3).

Figure S4.Cyclic voltammogram of (NBu₄)[(PEt₂Ph)₃Cu₁₉S₂₈(SnPh)₁₂] (**2**) in DMF.

Table S3. Assignment of the observed positive ions in the ESI-TOF Mass Spectrum of $[\text{Li}(thf)_4][\text{Cu}_{19}\text{S}_{28}(\text{SnPh})_{12}(\text{PEt}_2\text{Ph})_3]$ (1) (as shown in Fig. S2).

Figure S5. Normalized photoluminescence (PL) decay curves measured for solid complex $(NBu_4)[(PEt_2Ph)_3Cu_{19}S_{28}(SnPh)_{12}]$ (2).

Table S1. Selected bond lengths [pm] and angles [deg] for $(NBu_4)[(PEt_2Ph)_3Cu_{19}S_{28}(SnPh)_{12}]$ (2).

$C_{m}(1) = C(1 1)$	220 EE (10)
511(1) - 5(14)	230.33(10)
Sn(1) - S(2)	238./4(13)
Sn(1)-S(15)	243.24(14)
Sn(2)-S(3)	237.91(16)
Sn(2) - S(15)	239 10(15)
SII(2) = S(15)	233.10(13)
Sn(2) - S(16)	243.61(17)
Sn(3)-S(4)	238.30(15)
Sn(3)-S(17)	239.24(16)
Sn(3)-S(18)	244.75(14)
Sn(0) = S(10)	238 36(16)
SII(4) = S(15)	230.30(10)
Sn(4) - S(5)	238.69(14)
Sn(4)-S(17)	242.81(16)
Sn(5)-S(6)	238.93(15)
Sn(5)-S(20)	239.45(16)
Sn(5) - S(16)	245.63(14)
Sn(6) - S(7)	238 33(15)
SII(0) = S(7)	230.33(13)
Sn (6) - S (21)	238.72(14)
Sn(6)-S(20)	243.64(14)
Sn(7)-S(22)	238.23(14)
Sn(7)-S(8)	239.93(14)
Sn(7) - S(23)	243 45(16)
Sn(2) - S(0)	213.13(10)
SII(8) = S(9)	230.34(13)
Sn(8) - S(23)	238.36(17)
Sn(8)-S(24)	244.55(15)
Sn(9)-S(10)	237.79(14)
Sn(9)-S(25)	238.69(16)
Sn(9) - S(26)	243.37(16)
Sn(10) - S(11)	23856(14)
SII(10) = S(11)	230.30(14)
Sn(10) - S(26)	238.69(15)
Sn(10) – S(24)	244.33(17)
Sn(11)-S(28)	237.77(15)
Sn(11)-S(12)	239.65(17)
Sn(11) - S(27)	242.26(16)
Sn(12) - S(27)	238 18(15)
$G_{n}(12) = G(12)$	230.10(15)
511(12) - 5(13)	238.67(15)
Sn(12)-S(18)	245.90(15)
Cu(1)-S(2)	229.34(15)
Cu(1)-S(1)	231.29(14)
Cu(1)-S(3)	236.19(16)
$C_{11}(2) - S(5)$	230 55(15)
$C_{11}(2) = C_{11}(1)$	230.00(10)
Cu(2) = S(1)	231.23(14)
Cu(2) - S(4)	233.60(15)
Cu(3)-S(7)	230.18(15)
Cu(3)-S(1)	230.84(18)
Cu(3)-S(6)	233.46(15)
$C_{11}(4) - S(8)$	229 18(18)
$C_{11}(A) = C_{11}(A)$	232 69(14)
Cu(4) = S(1)	232.09(14)
Cu(4) - S(9)	238.14(16)
Cu(5)-S(1)	230.55(14)
Cu(5)-S(11)	231.92(18)
Cu(5)-S(10)	232.05(17)
Cu(6) - S(12)	229.36(15)
$C_{11}(6) = S(1)$	231 47(18)
$C_{11}(6) = C(12)$	201.1/17)
Cu(0) = S(13)	234.24(1/)
Cu(7) - S(22)	219.27(18)
$\alpha = (7)$ $\alpha (0)$	000 50 (4 5)

Cu $(7) - S(9)$ Cu $(8) - P(3)$ Cu $(8) - S(7)$ Cu $(8) - S(2)$ Cu $(9) - S(3)$ Cu $(9) - S(6)$ Cu $(9) - S(6)$ Cu $(10) - S(14)$ Cu $(10) - S(12)$ Cu $(10) - S(3)$ Cu $(11) - S(25)$ Cu $(11) - S(25)$ Cu $(11) - S(4)$ Cu $(12) - S(13)$ Cu $(12) - S(4)$ Cu $(12) - S(10)$ Cu $(13) - P(1)$ Cu $(13) - P(1)$ Cu $(13) - S(5)$ Cu $(13) - S(18)$ Cu $(13) - S(18)$ Cu $(13) - S(12)$ Cu $(14) - S(21)$ Cu $(14) - S(21)$ Cu $(14) - S(6)$ Cu $(15) - S(7)$ Cu $(16) - P(2)$ Cu $(16) - S(10)$ Cu $(16) - S(24)$ Cu $(16) - S(24)$ Cu $(17) - S(28)$ Cu $(17) - S(13)$ Cu $(18) - S(21)$ Cu $(19) - S(28)$ Cu $(19) - S(28)$ Cu $(19) - S(28)$ Cu $(11) - S(28)$ Cu $(11) - S(28)$ Cu $(12) - S(28)$	229.07(15) 222.15(17) 231.75(14) 234.19(15) 240.95(19) 219.96(14) 222.48(17) 225.97(15) 220.26(15) 224.32(15) 231.65(17) 223.00(16) 224.42(16) 231.6(2) 219.92(16) 222.62(16) 225.31(16) 224.18(16) 233.40(18) 236.41(16) 243.74(15) 224.62(16) 225.56(15) 231.78(14) 219.46(16) 225.28(14) 225.28(14) 225.28(14) 225.28(14) 225.28(14) 223.23(19) 234.83(16) 238.41(15) 239.02(18) 220.86(15) 224.46(16) 231.10(15) 223.23(16) 225.20(18) 229.92(16) 229.92(16)
Cu (19) - S (22) Cu (19) - S (14)	227.22(16) 228.58(15)
S (14) - Sn (1) - S (2) S (14) - Sn (1) - S (15) S (2) - Sn (1) - S (15) S (3) - Sn (2) - S (15) S (3) - Sn (2) - S (16) S (15) - Sn (2) - S (16) S (4) - Sn (3) - S (17) S (4) - Sn (3) - S (18) S (17) - Sn (3) - S (18) S (17) - Sn (3) - S (18) S (19) - Sn (4) - S (5) S (19) - Sn (4) - S (17) S (5) - Sn (4) - S (17) S (6) - Sn (5) - S (20) S (6) - Sn (5) - S (16) S (7) - Sn (6) - S (21) S (7) - Sn (6) - S (20) S (21) - Sn (6) - S (20) S (22) - Sn (7) - S (8) S (22) - Sn (7) - S (23) S (9) - Sn (8) - S (23)	110.38(5) 112.89(6) 105.39(6) 109.60(6) 116.11(5) 106.94(5) 111.06(6) 117.42(5) 104.61(6) 112.44(5) 111.22(6) 103.24(6) 113.70(5) 115.77(5) 103.34(5) 112.33(6) 104.00(5) 110.15(5) 109.37(5) 115.18(6) 104.10(5) 110.58(5)

S(9) - Sn(8) - S(24) S(23) - Sn(8) - S(24)	115.41(5)
S(23) - Sn(3) - S(24) S(10) - Sn(9) - S(25)	115.39(5)
S(10)-Sn(9)-S(26)	105.48(5)
S(25)-Sn(9)-S(26)	105.77(6)
S(11) - Sn(10) - S(26)	110.88(5)
S(11) - SI(10) - S(24) S(26) - Sn(10) - S(24)	114.32(5) 107.86(6)
S(28) - Sn(11) - S(12)	112.58(5)
S(28)-Sn(11)-S(27)	113.92(5)
S(12) - Sn(11) - S(27)	105.89(6)
S(27) - Sn(12) - S(13) S(27) - Sn(12) - S(18)	110.33(5) 106.72(6)
S(13) - Sn(12) - S(18)	111.37(6)
S(2)-Cu(1)-S(1)	120.88(5)
S (2) -Cu (1) -S (3)	116.12(5)
S(1) - Cu(1) - S(3) S(5) - Cu(2) - S(1)	122.99(5)
S(5) - Cu(2) - S(1) S(5) - Cu(2) - S(4)	107.45(5) 113.95(5)
S(1)-Cu(2)-S(4)	135.94(5)
S(7)-Cu(3)-S(1)	106.93(6)
S(7) - Cu(3) - S(6)	112.95(6)
S(1) - Cu(3) - S(0) S(8) - Cu(4) - S(1)	137.34(5) 118.35(5)
S (8) -Cu (4) -S (9)	117.01(6)
S(1)-Cu(4)-S(9)	124.63(6)
S(1) - Cu(5) - S(11)	133.22(6)
S(1) - Cu(5) - S(10) S(11) - Cu(5) - S(10)	114.96(6)
S(12)-Cu(6)-S(1)	120.88(6)
S(12)-Cu(6)-S(13)	116.32(6)
S(1) - Cu(6) - S(13) S(22) - Cu(7) - S(2)	122.76(6) 131.06(6)
S(22) - Cu(7) - S(9)	125.93(6)
S(2)-Cu(7)-S(9)	102.97(6)
P(3) - Cu(8) - S(7)	120.27(6)
S(7) - Cu(8) - S(16)	119.20(7) 105.91(5)
P(3)-Cu(8)-S(2)	105.01(7)
S(7)-Cu(8)-S(2)	94.26(5)
S(16) - Cu(8) - S(2) S(3) - Cu(9) - S(6)	108.82(6)
S(3) - Cu(9) - S(0) S(3) - Cu(9) - S(5)	118.16(6)
S(6)-Cu(9)-S(5)	108.47(6)
S(14) - Cu(10) - S(12)	135.08(6)
S(14) - Cu(10) - S(3) S(12) - Cu(10) - S(3)	124.84(6)
S(12) - Cu(11) - S(25)	127.61(6)
S(19)-Cu(11)-S(4)	123.21(6)
S(25) - Cu(11) - S(4)	107.18(6)
S(13) - Cu(12) - S(4) S(13) - Cu(12) - S(10)	117.02(6)
S (4) -Cu (12) -S (10)	109.61(6)
P(1)-Cu(13)-S(5)	113.49(6)
P(1) - Cu(13) - S(18) S(5) - Cu(13) - S(18)	121.56(6)
P(1) - Cu(13) - S(12)	105.93(6)
S(5)-Cu(13)-S(12)	95.20(5)
S (18) -Cu (13) -S (12)	109.36(5)
S(21) - Cu(14) - S(19) S(21) - Cu(14) - S(6)	119 02(6)
S(19) -Cu(14) -S(6)	110.18(6)
S(9)-Cu(15)-S(11)	134.00(6)

S(9)-Cu(15)-S(7)	116.99(6)
S(11)-Cu(15)-S(7)	109.01(6)
P(2)-Cu(16)-S(10)	121.36(6)
P(2)-Cu(16)-S(8)	117.82(7)
S(10)-Cu(16)-S(8)	93.51(5)
P(2)-Cu(16)-S(24)	108.00(7)
S(10)-Cu(16)-S(24)	104.11(6)
S(8)-Cu(16)-S(24)	110.78(6)
S(28)-Cu(17)-S(8)	133.69(6)
S(28)-Cu(17)-S(13)	123.40(6)
S(8)-Cu(17)-S(13)	102.89(5)
S (28) -Cu (17) -Cu (6)	105.20(5)
S(8)-Cu(17)-Cu(6)	102.40(6)
S (13) -Cu (17) -Cu (6)	54.52(5)
S(25) - Cu(18) - S(21)	129.21(6)
S(25) - Cu(18) - S(11)	118.09(6)
S(21) - Cu(18) - S(11)	110.18(6)
S(28) - Cu(19) - S(22)	120.47(6)
S(28) - Cu(19) - S(14)	120.09(0)
S(22) - Cu(19) - S(14) Cu(5) - S(1) - Cu(2)	110.J1(0)
Cu(5) = S(1) = Cu(5)	83 55 (5)
Cu(3) = S(1) = Cu(2)	84 03(5)
Cu(5) = S(1) = Cu(2)	1/0 98(6)
$C_{11}(3) = S(1) = C_{11}(1)$	70,00(5)
$C_{11}(2) = S(1) = C_{11}(1)$	122 50(6)
$C_{11}(5) = S(1) = C_{11}(6)$	121 00(6)
$C_{11}(3) = S(1) = C_{11}(6)$	138.29(6)
Cu(2) - S(1) - Cu(6)	70.21(5)
Cu(1) - S(1) - Cu(6)	96.46(5)
Cu (5) -S (1) -Cu (4)	69.34(5)
Cu (3) -S (1) -Cu (4)	121.00(6)
Cu(2)-S(1)-Cu(4)	140.32(6)
Cu(1)-S(1)-Cu(4)	96.13(5)
Cu(6)-S(1)-Cu(4)	99.05(6)
Cu(7)-S(2)-Cu(1)	98.42(6)
Cu(7)-S(2)-Sn(1)	98.66(6)
Cu(1)-S(2)-Sn(1)	99.45(6)
Cu(7)-S(2)-Cu(8)	130.71(6)
Cu(1)-S(2)-Cu(8)	97.09(6)
Sn(1)-S(2)-Cu(8)	124.32(6)
Cu(9) - S(3) - Cu(10)	120.22(6)
Cu(9) - S(3) - Cu(1)	77.52(5)
Cu(10) - S(3) - Cu(1)	/0./1(5)
Cu(9) = S(3) = Sn(2)	110.26(6)
Cu(10) - S(3) - Sn(2)	122.80(6)
Cu(1) = S(3) = Sii(2) Cu(12) = S(4) = Cu(11)	120 80 (6)
$C_{11}(12) = S(4) = C_{11}(2)$	71 22(5)
$C_{11}(11) - S(4) - C_{11}(2)$	72 59(5)
$C_{11}(12) - S(4) - S_{11}(3)$	110,19(6)
Cu(11) - S(4) - Sn(3)	121.26(6)
Cu(2) - S(4) - Sn(3)	100.36(5)
Cu (9) -S (5) -Cu (2)	95.06(5)
Cu(9)-S(5)-Cu(13)	118.35(6)
Cu(2)-S(5)-Cu(13)	111.14(6)
Cu(9)-S(5)-Sn(4)	110.18(6)
Cu(2)-S(5)-Sn(4)	97.13(5)
Cu(13)-S(5)-Sn(4)	119.81(6)
Cu(9)-S(6)-Cu(14)	118.47(6)
Cu (9) – S (6) – Cu (3)	70.28(5)
Cu (14) - S (6) - Cu (3)	/3.27(5)
Cu(9)-S(6)-Sn(5)	112.73(6)

Cu(14)-S(6)-Sn(5)	121.72(6)
Cu (3) -S (6) -Sn (5)	100.97(6)
Cu(15) - S(7) - Cu(3)	94.78(6)
Cu(15) - S(7) - Cu(8)	118.80(6)
Cu(5) = S(7) = Cu(6)	113.40(0) 108.22(6)
$C_{11}(3) = S(7) = S_{11}(6)$	97 44 (6)
$C_{11}(8) = S(7) = S_{11}(6)$	119 39(6)
Cu(17) - S(8) - Cu(4)	100.02(6)
Cu (17) – S (8) – Cu (16)	132.66(6)
Cu(4)-S(8)-Cu(16)	98.23(6)
Cu(17)-S(8)-Sn(7)	97.34(5)
Cu(4)-S(8)-Sn(7)	98.79(6)
Cu(16)-S(8)-Sn(7)	122.39(6)
Cu(15)-S(9)-Cu(7)	117.45(6)
Cu(15) - S(9) - Cu(4)	75.03(6)
Cu(7) = S(9) = Cu(4)	69.82(5)
Cu(13) - S(9) - Sii(6)	111.10(0) 122.62(7)
$C_{11}(4) = S(9) = S_{11}(8)$	96 50 (6)
$C_{11}(12) = S(10) = C_{11}(5)$	92.32(6)
Cu(12) - S(10) - Cu(16)	121.00(6)
Cu(5) – S(10) – Cu(16)	110.93(6)
Cu(12)-S(10)-Sn(9)	106.34(6)
Cu(5)-S(10)-Sn(9)	93.87(6)
Cu(16)-S(10)-Sn(9)	124.11(6)
Cu(15)-S(11)-Cu(18)	119.48(6)
Cu(15)-S(11)-Cu(5)	72.76(5)
Cu(18) - S(11) - Cu(5)	75.16(5)
Cu(15) - S(11) - Sn(10)	113.29(6)
Cu(10) = S(11) = Sil(10) Cu(5) = S(11) = Sil(10)	122.17(0) 100 58(7)
$C_{11}(10) = S(12) = C_{11}(6)$	97 96(6)
Cu(10) - S(12) - Sn(11)	96.64(6)
Cu(6) - S(12) - Sn(11)	97.68(5)
Cu(10)-S(12)-Cu(13)	134.76(6)
Cu(6)-S(12)-Cu(13)	94.53(5)
Sn(11)-S(12)-Cu(13)	124.50(6)
Cu(12)-S(13)-Cu(17)	119.05(6)
Cu (12) -S (13) -Cu (6)	78.48(6)
Cu(17) - S(13) - Cu(6)	72.03(5)
Cu(12) = S(13) = Sn(12) Cu(17) = S(13) = Sn(12)	113.31(0) 123.56(6)
$C_{11}(6) = S(13) = S_{11}(12)$	123.30(0) 100.30(6)
$C_{11}(10) - S(14) - C_{11}(19)$	88.94(5)
Cu(10) - S(14) - Sn(1)	98.87(6)
Cu(19) - S(14) - Sn(1)	106.12(6)
Sn(2)-S(15)-Sn(1)	102.00(5)
Cu(8)-S(16)-Sn(2)	108.27(6)
Cu(8)-S(16)-Sn(5)	107.67(5)
Sn(2)-S(16)-Sn(5)	107.76(5)
Sn(3) - S(17) - Sn(4)	101.66(6)
Cu(13) = S(18) = Sn(3)	106.07(6)
Sn(3) - S(18) - Sn(12)	109.01(0) 109.32(6)
Cu(11) - S(19) - Cu(14)	81.23(6)
Cu(11) - S(19) - Sn(4)	101.86(7)
Cu(14)-S(19)-Sn(4)	108.91(6)
Sn(5)-S(20)-Sn(6)	99.36(6)
Cu(14)-S(21)-Cu(18)	79.60(6)
Cu(14)-S(21)-Sn(6)	104.80(5)
Cu(18)-S(21)-Sn(6)	108.35(6)
Cu (7) –S (22) –Cu (19)	93.16(6)

Cu(7)-S(22)-Sn(7)	98.92(6)
Cu(19)-S(22)-Sn(7)	104.47(6)
Sn(8)-S(23)-Sn(7)	102.43(6)
Cu(16)-S(24)-Sn(10)	109.54(6)
Cu(16)-S(24)-Sn(8)	105.32(5)
Sn(10)-S(24)-Sn(8)	110.59(6)
Cu(18)-S(25)-Cu(11)	81.78(6)
Cu(18)-S(25)-Sn(9)	105.53(6)
Cu(11)-S(25)-Sn(9)	109.06(6)
Sn(10)-S(26)-Sn(9)	99.91(5)
Sn(12)-S(27)-Sn(11)	102.07(6)
Cu(17)-S(28)-Cu(19)	89.26(6)
Cu(17)-S(28)-Sn(11)	98.16(6)
Cu (19) -S (28) -Sn (11)	103.59(6)

Figure S1. Measured (black) and simulated (grey) X-ray powder patterns for $[Li(thf)_4]$ [(PEt₂Ph)₃Cu₁₉S₂₈(SnPh)₁₂] (1).

Figure S2. Negative-ion ESI-TOF mass spectrum from a DMF/THF solution of $[Li(thf)_4][Cu_{19}S_{28}(SnPh)_{12}(PEt_2Ph)_3]$ (1). The inset shows a comparison of isotopomere–resolved peaks from experiment and simulation (For assignment of the peaks see table S2).

Table S2. Assignment of the observed negative ions in the ESI-TOF Mass Spectrum of $[\text{Li}(thf)_4][\text{Cu}_{19}\text{S}_{28}(\text{SnPh})_{12}(\text{PEt}_2\text{Ph})_3]$ (1) (as shown in Fig. S2).

	exp.	calc.	composition
A	4454.52	4454.2	$[Cu_{19}(SnC_6H_5)_{12}S_{28}]^-$
В	4619.55	4620.8	$[Cu_{19}(SnC_6H_5)_{12}S_{28}(PEt_2Ph)]^-$
С	4786.57	4787.0	$[Cu_{19}(SnC_6H_5)_{12}S_{28}(PEt_2Ph)_2]^-$
D	2195.27	2195.6	$\left[Cu_{18}(SnC_{6}H_{5})_{12}S_{28}\right]^{2-}$

Figure S3. positive-ion ESI-TOF mass spectrum from a DMF/THF solution of $[\text{Li}(thf)_4][\text{Cu}_{19}\text{S}_{28}(\text{SnPh})_{12}(\text{PEt}_2\text{Ph})_3]$ (1) (upper spectrum). Below are shown a simulation of identifiable peaks (For assignment of the peaks see table S3).

Table S3. Assignment of the observed positive ions in the	ESI-TOF Mass	Spectrum of
$[\text{Li}(\text{thf})_4][\text{Cu}_{19}\text{S}_{28}(\text{SnPh})_{12}(\text{PEt}_2\text{Ph})_3]$ (1) (as shown in Fig.	S2).	

	exp.	calc.	composition
А	395.13	395.1	$\left[Cu(P(C_{2}H_{5})_{2}C_{6}H_{5})_{2}\right]^{+}$
В	217.12	217.1	$[Li(HP(C_2H_5)C_6H_5)(C_4H_8O)]^+$
С	189.10	189.1	$[Li(H_2PC_6H_5)(C_4H_8O)]^+$

Figure S4.Cyclic voltammogram of $(NBu_4)[(PEt_2Ph)_3Cu_{19}S_{28}(SnPh)_{12}]$ (2) in DMF.

Figure S5. Normalized photoluminescence (PL) decay curves measured for solid complex 2 at temperatures of 17 and 200 K and at different emission wavelengths. PL was excited at 337 nm by using a N₂-laser (~2 ns pulses, 10 Hz pulse repetition rate, ~50 μ W power on the sample). Typically 500-800 decay traces were acquired and averaged at specific temperature and emission wavelength.