Electronic Supplementary Information for

Synthesis and structural characterisation of (aryl-BIAN)copper(I) complexes and their application as catalysts for the cycloaddition of azides and alkynes

Lidong Li,^a Patrícia S. Lopes,^a Vitor Rosa,^b Cláudia A. Figueira,^a M. Amélia N. D. A. Lemos,^c M.

Teresa Duarte,^a Teresa Avilés,^{*b} Pedro T. Gomes^{*a}

^aCentro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

^bREQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal

^cInstituto de Biotecnologia e Bioengenharia, Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Lizzad	Anodic scan		Cathodic scan		Upon scan reversal	
Ligand					after I ^{ox}	
	$\mathrm{E_p}^{\mathrm{ox}}(\mathrm{I})^b$	$\mathrm{E_{p}^{ox}(II)}^{b}$	$E_p^{red}(III)^c$	$\mathrm{E_{p}}^{\mathrm{ox}}(\mathrm{IV})^{b}$	$\mathrm{E_p}^{\mathrm{red}}(1)^b$	$\mathrm{E}_{1/2}^{\mathrm{red}}(2)^{b}$
L1	0.61	1.12	-2.00	-1.37		
L2	0.72	1.31	-2.08	-1.67	-0.57	-0.87
L3	0.86	1,39	-2.00	-1.40	-0.64	-0.83
L4	0.86	1,48	-2.00	-1.44	-0.55	-0.81
L5	0.90	1.48	-2.11	-1.64	-0.55	-0.78

Table S1. Electrochemical data for the ligands L1-L5.^a

^{*a*} General conditions: [NBu₄][BF₄]/CH₂Cl₂ electrolyte solution, Pt-disk working electrode, scan rate: 200 mV/s. ^{*b*} E_p^{ox} and E_p^{red} stand for oxidation and reduction peak potentials, respectively. $E_{1/2}^{ox}$ and $E_{1/2}^{red}$ are the half-wave oxidation and reduction potentials respectively. All potentials are given in V *versus* Fc/Fc⁺ redox couple. Table S2. Energies of the HOMO and LUMO of ligands L1-L5 calculated using the HF/DFT

B3LYP/6-31G* model.

Ligands	HOMO/eV	LUMO/eV
L1	-5.78	-2.02
L2	-5.42	-1.99
L3	-5.61	-1.97
L4	-5.54	-2.07
L5	-5.60	-2.07

Computational Calculations. The calculations were performed using the Spartan'04 software (Wavefunction, Inc.). A hybrid HF/DFT B3LYP model with a 6-31G* basis set was used for all calculations and full geometry optimizations were performed.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is C The Royal Society of Chemistry 2012

Compounds	3	$4 \cdot 0.5 (CH_2Cl_2)$	6 ·0.3(CH ₂ Cl ₂)	$7 \cdot CH_2Cl_2$		
Empirical formula	$C_{60}H_{56}BCuF_4N_4$	C _{60.5} H ₅₇ BClCuF ₄ N ₄	C _{50.3} H _{50.6} B Cl _{0.6} CuF ₄ N ₄	$C_{67}H_{60}N_2CuBCl_2F_4P_2$		
Formula weight	983.45	1025.90	882.77	1176.36		
Temperature (K)	150(2)	150(2)	150(2)	150(2)		
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073		
Crystal system	Monoclinic	Orthorhombic	Monoclinic	Orthorhombic		
Space group	$P2_{1}/c$	Fddd	$P2_{1}/n$	Pbca		
a (Å)	16.4565(5)	17.5980(13)	24.8522(14)	17.5292(7)		
<i>b</i> (Å)	44.4015(13)	21.498(2)	11.9094(7)	24.6971(10)		
<i>c</i> (Å)	29.1759(8)	27.979(2)	32.6051(19)	26.7660(11)		
α (°)	90	90	90	90		
β (°)	102.0550(10)	90	105.304(2)	90		
γ (°)	90	90	90	90		
$V(\text{\AA}^3)$	20848.5(10)	10585.1(15)	9308.1(9)	11587.5(8)		
Ζ	16	8	8	8		
$D_{\text{calc}} (\mathrm{mg} \ \mathrm{\AA}^{-3})$	1.253	1.287	1.260	1.349		
$\mu (\mathrm{mm}^{-1})$	0.476	0.520	0.558	0.581		
<i>F</i> (000)	8224	4280	3685	4880		
Crystal size (mm)	0.20×0.18×0.10	0.25×0.15×0.10	0.32×0.26×0.24	0.40×0.34×0.26		
θ (°)	0.92-25.67	3.33-25.67	0.92-25.72	2.53-25.70		
Index ranges	-20≤h≤19,	-21≤h≤15,	-30≤h≤29,	-18≤h≤21,		
	-48≤k≤54,	-26≤k≤25,	-14≤k≤14,	-26≤k≤30,		
	-35≤l≤32	-31≤l≤33	-39≤l≤39	-32≤l≤32		
Reflections collected	301428	13927	178251	166728		
Independent reflections	39329	2500	17534	10983		
Reflections observed $[I \ge 2\sigma(I)]$	18846	1938	7059	7757		
$R_{ m int}$	0.1300 ^{<i>a</i>}	0.0621	0.1835 ^{<i>a</i>}	0.0672		
GOOF	0.995	1.089	1.000	1.070		
$R_1 [I \ge 2\sigma(I)]$	0.0755	0.0460	0.0589	0.0435		
$wR_2 [I \ge 2\sigma(I)]$	0.1879	0.1187	0.1385	0.1178		
R_1 , wR_2 all data	0.1852/0.2238 ^a	0.0618/0.1265	0.1502/0.1502 ^a	0.0795/0.1328		
^a These high values are due to the poor diffraction quality of the crystals.						

Table S3. Crystal data and structure refinements for complexes 3, 4, 6 and 7

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

Figure S1. Cyclic voltammograms of L4 obtained: (a) at scan rate of 200 mV/s for the anodic scan; (b)

at varied scan rates for the cathodic scan.

Figure S2. Plot of $E_p^{ox}(I)$ versus E(HOMO) of the ligands L1-L5.